-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
154 lines (126 loc) · 5.16 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#include <stdio.h>
#include <stdint.h>
#include <iostream>
#include <opencv2/opencv.hpp>
#include "NvInfer.h"
#include "recv.h"
#include "yolo.h"
#include "jbuf.h"
#include "nvdsinfer_custom_impl.h"
#include "nvdsparsebbox_Yolo.h"
const char* CFG_PATH = "../../../model/darknet/yolov3_person.cfg";
const char* WTS_PATH = "../../../model/darknet/yolov3_person_16000.weights";
const int32_t batch_size = 1;
const int32_t input_tensor_height = 640;
const int32_t input_tensor_width = 640;
const int32_t input_tensor_depth = 3;
const char* input_blob_name = "data";
const char output_blob_names[][20] = {
"yolo_83",
"yolo_95",
"yolo_107"
};
Logger gLogger;
nvinfer1::ICudaEngine* initEngine(const char* cfg_path, const char* weight_path, nvinfer1::IBuilder* builder) {
NetworkInfo info;
info.networkType = "yolov3";
info.configFilePath = cfg_path;
info.wtsFilePath = weight_path;
info.deviceType = "kGPU";
info.inputBlobName = input_blob_name;
Yolo yolo(info, builder);
return yolo.createEngine();
}
void mark_a_people(cv::Mat canvas, NvDsInferObjectDetectionInfo people) {
const static cv::Scalar color(0, 255, 255);
cv::rectangle(canvas, cv::Point(people.left, people.top), cv::Point(people.left + people.width, people.top + people.height), color, 2);
}
int32_t main(int32_t argc, char** argv) {
fprintf(stderr, "haha\n");
fflush(stderr);
// creating image source
ImageSource src("tcp://10.249.77.88:18964");
nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger);
nvinfer1::ICudaEngine* engine = initEngine(CFG_PATH, WTS_PATH, builder);
auto ctx = engine->createExecutionContext();
int32_t bsize = batch_size;
UnifiedBufManager buffers(std::shared_ptr<nvinfer1::ICudaEngine>(engine, InferDeleter()), bsize);
int32_t tensor_size = buffers.size(input_blob_name);
if (tensor_size != batch_size * input_tensor_height * input_tensor_width * input_tensor_depth * sizeof(float)) {
std::cerr << "inconsistent input tensor size" << std::endl;
exit(1);
}
std::vector<NvDsInferLayerInfo> layerInfo;
for (int32_t i = 0; i < 3; i++) {
NvDsInferLayerInfo layer = buffers.getLayerInfo(output_blob_names[i]);
layerInfo.emplace_back(layer);
}
std::cerr << "#layers = " << layerInfo.size() << endl;
static const std::vector<float> kANCHORS = {
12, 23, 21, 41, 34, 54, 32, 112, 53,
78, 75, 120, 58, 196, 104, 288, 184, 322
};
static const std::vector<std::vector<int>> kMASKS = {
{6, 7, 8},
{3, 4, 5},
{0, 1, 2}};
NvDsInferParseDetectionParams params;
params.numClassesConfigured = NUM_CLASSES_YOLO;
int32_t frames = 0;
while (true) {
frames ++;
auto img = src.recv();
cv::Mat img_resized(input_tensor_height, input_tensor_width, CV_8UC3);
//cv::Mat img_resized(input_tensor_height, input_tensor_width, CV_32FC3);
fprintf(stderr, "[frame %d]resizing from (%d, %d) to (%d, %d)\n", frames, img.rows, img.cols, img_resized.rows, img_resized.cols);
cv::resize(img, img_resized, img_resized.size(), 0, 0, CV_INTER_CUBIC);
cv::Mat img_float;
img_resized.convertTo(img_float, CV_32FC3);
img_float /= 255.0;
// axis reorder
float* p = (float*)buffers.getBuffer(std::string(input_blob_name));
if (NULL == p) {
std::cerr << "null pointer of input buffer" << std::endl;
}
for (int32_t c = 0; c < input_tensor_depth; c++) {
for (int32_t y = 0; y < input_tensor_height; y++) {
for (int32_t x = 0; x < input_tensor_width; x++) {
*p = img_float.at<cv::Vec3f>(y, x)[input_tensor_depth - c];
p++;
}
}
}
//std::memcpy(buffers.getBuffer(std::string(input_blob_name)), img_float.data, batch_size * input_tensor_height * input_tensor_width * input_tensor_depth * sizeof(float));
auto status = ctx->execute(batch_size, buffers.getDeviceBindings().data());
if (!status) {
std::cerr << "execution failed!" << std::endl;
exit(1);
}
float* tensor_data = (float*)buffers.getBuffer(std::string(input_blob_name));
std::cerr << "---------------" << std::endl;
for (int32_t i = 0; i < 30; i++) {
std::cerr << "v:" << tensor_data[i] << "\t";
}
std::cerr << std::endl;
NvDsInferNetworkInfo networkInfo;
networkInfo.width = img.cols;
networkInfo.height = img.rows;
networkInfo.channels = 3;
std::vector<NvDsInferParseObjectInfo> objs;
bool res = NvDsInferParseYoloV3(layerInfo, networkInfo, params, objs, kANCHORS, kMASKS);
if (!res) {
std::cerr << "fail to call NvDsInferParseYoloV3" << std::endl;
exit(1);
}
std::cerr << "[det] " << objs.size() << " were found" << endl;
for (auto obj : objs) {
mark_a_people(img, obj);
}
char pathBuf[30];
sprintf(pathBuf, "dump/frame_%d.jpg", frames);
cv::imwrite(pathBuf, img);
if (frames >= 100) {
break;
}
}
}