-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_arrays.py
419 lines (380 loc) · 16.3 KB
/
training_arrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
"""Part of the training engine related to plain array data (e.g. Numpy).
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from scipy.sparse import issparse
from .training_utils import batch_shuffle
from .training_utils import make_batches
from .training_utils import check_num_samples
from .. import backend as K
from .. import callbacks as cbks
from ..utils.generic_utils import Progbar
from ..utils.generic_utils import slice_arrays
from ..utils.generic_utils import to_list
from ..utils.generic_utils import unpack_singleton
def fit_loop(model, f, ins,
out_labels=None,
batch_size=None,
epochs=100,
verbose=1,
callbacks=None,
val_f=None,
val_ins=None,
shuffle=True,
callback_metrics=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
save_dir=None):
"""Abstract fit function for `f(ins)`.
Assumes that f returns a list, labeled by out_labels.
# Arguments
model: Keras model instance.
f: Keras function returning a list of tensors
ins: List of tensors to be fed to `f`
out_labels: List of strings, display names of
the outputs of `f`
batch_size: Integer batch size or None if unknown.
epochs: Number of times to iterate over the data
verbose: Verbosity mode, 0, 1 or 2
callbacks: List of callbacks to be called during training
val_f: Keras function to call for validation
val_ins: List of tensors to be fed to `val_f`
shuffle: Whether to shuffle the data at the beginning of each epoch
callback_metrics: List of strings, the display names of the metrics
passed to the callbacks. They should be the
concatenation of list the display names of the outputs of
`f` and the list of display names of the outputs of `f_val`.
initial_epoch: Epoch at which to start training
(useful for resuming a previous training run)
steps_per_epoch: Total number of steps (batches of samples)
before declaring one epoch finished and starting the
next epoch. Ignored with the default value of `None`.
validation_steps: Number of steps to run validation for
(only if doing validation from data tensors).
Ignored with the default value of `None`.
# Returns
`History` object.
"""
do_validation = False
if val_f and val_ins:
do_validation = True
if (verbose and ins and
hasattr(ins[0], 'shape') and hasattr(val_ins[0], 'shape')):
print('Train on %d samples, validate on %d samples' %
(ins[0].shape[0], val_ins[0].shape[0]))
if validation_steps:
do_validation = True
if steps_per_epoch is None:
raise ValueError('Can only use `validation_steps` '
'when doing step-wise '
'training, i.e. `steps_per_epoch` '
'must be set.')
elif do_validation:
if steps_per_epoch:
raise ValueError('Must specify `validation_steps` '
'to perform validation '
'when doing step-wise training.')
num_train_samples = check_num_samples(ins,
batch_size=batch_size,
steps=steps_per_epoch,
steps_name='steps_per_epoch')
if num_train_samples is not None:
index_array = np.arange(num_train_samples)
model.history = cbks.History()
_callbacks = [cbks.BaseLogger(
stateful_metrics=model.stateful_metric_names)]
if verbose:
if steps_per_epoch is not None:
count_mode = 'steps'
else:
count_mode = 'samples'
_callbacks.append(
cbks.ProgbarLogger(
count_mode,
stateful_metrics=model.stateful_metric_names))
_callbacks += (callbacks or []) + [model.history]
callbacks = cbks.CallbackList(_callbacks)
out_labels = out_labels or []
# it's possible to callback a different model than itself
# (used by Sequential models)
if hasattr(model, 'callback_model') and model.callback_model:
callback_model = model.callback_model
else:
callback_model = model
callbacks.set_model(callback_model)
callbacks.set_params({
'batch_size': batch_size,
'epochs': epochs,
'steps': steps_per_epoch,
'samples': num_train_samples,
'verbose': verbose,
'do_validation': do_validation,
'metrics': callback_metrics or [],
})
callbacks.on_train_begin()
callback_model.stop_training = False
for cbk in callbacks:
cbk.validation_data = val_ins
# To prevent a slowdown,
# we find beforehand the arrays that need conversion.
feed = (model._feed_inputs +
model._feed_targets +
model._feed_sample_weights)
indices_for_conversion_to_dense = []
for i in range(len(feed)):
if issparse(ins[i]) and not K.is_sparse(feed[i]):
indices_for_conversion_to_dense.append(i)
for epoch in range(initial_epoch, epochs):
# Reset stateful metrics
for m in model.stateful_metric_functions:
m.reset_states()
callbacks.on_epoch_begin(epoch)
epoch_logs = {}
if steps_per_epoch is not None:
for step_index in range(steps_per_epoch):
batch_logs = {}
batch_logs['batch'] = step_index
batch_logs['size'] = 1
callbacks.on_batch_begin(step_index, batch_logs)
outs = f(ins)
outs = to_list(outs)
for l, o in zip(out_labels, outs):
batch_logs[l] = o
callbacks.on_batch_end(step_index, batch_logs)
if callback_model.stop_training:
break
if do_validation:
val_outs = test_loop(model, val_f, val_ins,
steps=validation_steps,
verbose=0)
val_outs = to_list(val_outs)
# Same labels assumed.
for l, o in zip(out_labels, val_outs):
epoch_logs['val_' + l] = o
else:
if shuffle == 'batch':
index_array = batch_shuffle(index_array, batch_size)
elif shuffle:
np.random.shuffle(index_array)
if save_dir:
np.savetxt(os.path.join(save_dir, "array %d.txt" % epoch), index_array,
delimiter = ",")
batches = make_batches(num_train_samples, batch_size)
for batch_index, (batch_start, batch_end) in enumerate(batches):
batch_ids = index_array[batch_start:batch_end]
try:
if isinstance(ins[-1], float):
# Do not slice the training phase flag.
ins_batch = slice_arrays(
ins[:-1], batch_ids) + [ins[-1]]
else:
ins_batch = slice_arrays(ins, batch_ids)
except TypeError:
raise TypeError('TypeError while preparing batch. '
'If using HDF5 input data, '
'pass shuffle="batch".')
batch_logs = {}
batch_logs['batch'] = batch_index
batch_logs['size'] = len(batch_ids)
callbacks.on_batch_begin(batch_index, batch_logs)
for i in indices_for_conversion_to_dense:
ins_batch[i] = ins_batch[i].toarray()
outs = f(ins_batch)
outs = to_list(outs)
for l, o in zip(out_labels, outs):
batch_logs[l] = o
callbacks.on_batch_end(batch_index, batch_logs)
if callback_model.stop_training:
break
if batch_index == len(batches) - 1: # Last batch.
if do_validation:
val_outs = test_loop(model, val_f, val_ins,
batch_size=batch_size,
verbose=0)
val_outs = to_list(val_outs)
# Same labels assumed.
for l, o in zip(out_labels, val_outs):
epoch_logs['val_' + l] = o
callbacks.on_epoch_end(epoch, epoch_logs)
if callback_model.stop_training:
break
callbacks.on_train_end()
return model.history
def predict_loop(model, f, ins, batch_size=32, verbose=0, steps=None):
"""Abstract method to loop over some data in batches.
# Arguments
model: Keras model instance.
f: Keras function returning a list of tensors.
ins: list of tensors to be fed to `f`.
batch_size: integer batch size.
verbose: verbosity mode.
steps: Total number of steps (batches of samples)
before declaring `predict_loop` finished.
Ignored with the default value of `None`.
# Returns
Array of predictions (if the model has a single output)
or list of arrays of predictions
(if the model has multiple outputs).
"""
num_samples = check_num_samples(ins,
batch_size=batch_size,
steps=steps,
steps_name='steps')
if verbose == 1:
if steps is not None:
progbar = Progbar(target=steps)
else:
progbar = Progbar(target=num_samples)
indices_for_conversion_to_dense = []
for i in range(len(model._feed_inputs)):
if issparse(ins[i]) and not K.is_sparse(model._feed_inputs[i]):
indices_for_conversion_to_dense.append(i)
if steps is not None:
# Step-based predictions.
# Since we do not know how many samples
# we will see, we cannot pre-allocate
# the returned Numpy arrays.
# Instead, we store one array per batch seen
# and concatenate them upon returning.
unconcatenated_outs = []
for step in range(steps):
batch_outs = f(ins)
batch_outs = to_list(batch_outs)
if step == 0:
for batch_out in batch_outs:
unconcatenated_outs.append([])
for i, batch_out in enumerate(batch_outs):
unconcatenated_outs[i].append(batch_out)
if verbose == 1:
progbar.update(step + 1)
if len(unconcatenated_outs) == 1:
return np.concatenate(unconcatenated_outs[0], axis=0)
return [np.concatenate(unconcatenated_outs[i], axis=0)
for i in range(len(unconcatenated_outs))]
else:
# Sample-based predictions.
outs = []
batches = make_batches(num_samples, batch_size)
index_array = np.arange(num_samples)
for batch_index, (batch_start, batch_end) in enumerate(batches):
batch_ids = index_array[batch_start:batch_end]
if ins and isinstance(ins[-1], float):
# Do not slice the training phase flag.
ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]]
else:
ins_batch = slice_arrays(ins, batch_ids)
for i in indices_for_conversion_to_dense:
ins_batch[i] = ins_batch[i].toarray()
batch_outs = f(ins_batch)
batch_outs = to_list(batch_outs)
if batch_index == 0:
# Pre-allocate the results arrays.
for batch_out in batch_outs:
shape = (num_samples,) + batch_out.shape[1:]
outs.append(np.zeros(shape, dtype=batch_out.dtype))
for i, batch_out in enumerate(batch_outs):
outs[i][batch_start:batch_end] = batch_out
if verbose == 1:
progbar.update(batch_end)
return unpack_singleton(outs)
def test_loop(model, f, ins, batch_size=None, verbose=0, steps=None):
"""Abstract method to loop over some data in batches.
# Arguments
model: Keras model instance.
f: Keras function returning a list of tensors.
ins: list of tensors to be fed to `f`.
batch_size: integer batch size or `None`.
verbose: verbosity mode.
steps: Total number of steps (batches of samples)
before declaring predictions finished.
Ignored with the default value of `None`.
# Returns
Scalar loss (if the model has a single output and no metrics)
or list of scalars (if the model has multiple outputs
and/or metrics). The attribute `model.metrics_names` will give you
the display labels for the scalar outputs.
"""
if hasattr(model, 'metrics'):
for m in model.stateful_metric_functions:
m.reset_states()
stateful_metric_indices = [
i for i, name in enumerate(model.metrics_names)
if str(name) in model.stateful_metric_names]
else:
stateful_metric_indices = []
num_samples = check_num_samples(ins,
batch_size=batch_size,
steps=steps,
steps_name='steps')
outs = []
if verbose == 1:
if steps is not None:
progbar = Progbar(target=steps)
else:
progbar = Progbar(target=num_samples)
# To prevent a slowdown,
# we find beforehand the arrays that need conversion.
feed = (model._feed_inputs +
model._feed_targets +
model._feed_sample_weights)
indices_for_conversion_to_dense = []
for i in range(len(feed)):
if issparse(ins[i]) and not K.is_sparse(feed[i]):
indices_for_conversion_to_dense.append(i)
if steps is not None:
for step in range(steps):
batch_outs = f(ins)
if isinstance(batch_outs, list):
if step == 0:
for _ in enumerate(batch_outs):
outs.append(0.)
for i, batch_out in enumerate(batch_outs):
if i in stateful_metric_indices:
outs[i] = float(batch_out)
else:
outs[i] += batch_out
else:
if step == 0:
outs.append(0.)
outs[0] += batch_outs
if verbose == 1:
progbar.update(step + 1)
for i in range(len(outs)):
if i not in stateful_metric_indices:
outs[i] /= steps
else:
batches = make_batches(num_samples, batch_size)
index_array = np.arange(num_samples)
for batch_index, (batch_start, batch_end) in enumerate(batches):
batch_ids = index_array[batch_start:batch_end]
if isinstance(ins[-1], float):
# Do not slice the training phase flag.
ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]]
else:
ins_batch = slice_arrays(ins, batch_ids)
for i in indices_for_conversion_to_dense:
ins_batch[i] = ins_batch[i].toarray()
batch_outs = f(ins_batch)
if isinstance(batch_outs, list):
if batch_index == 0:
for batch_out in enumerate(batch_outs):
outs.append(0.)
for i, batch_out in enumerate(batch_outs):
if i in stateful_metric_indices:
outs[i] = batch_out
else:
outs[i] += batch_out * len(batch_ids)
else:
if batch_index == 0:
outs.append(0.)
outs[0] += batch_outs * len(batch_ids)
if verbose == 1:
progbar.update(batch_end)
for i in range(len(outs)):
if i not in stateful_metric_indices:
outs[i] /= num_samples
return unpack_singleton(outs)