-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining224.py
1522 lines (1418 loc) · 71.7 KB
/
training224.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Training-related part of the Keras engine.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import warnings
import copy
import numpy as np
from .network import Network
from .base_layer import Layer
from .training_utils import collect_metrics
from .training_utils import check_array_length_consistency
from .training_utils import check_loss_and_target_compatibility
from .training_utils import standardize_class_weights
from .training_utils import standardize_input_data
from .training_utils import standardize_sample_weights
from .training_utils import standardize_weights
from .training_utils import weighted_masked_objective
from . import training_arrays
from . import training_generator
from .. import backend as K
from .. import optimizers
from .. import losses
from .. import metrics as metrics_module
from ..utils.generic_utils import slice_arrays
from ..utils.generic_utils import to_list
from ..utils.generic_utils import unpack_singleton
from ..legacy import interfaces
class Model(Network):
"""The `Model` class adds training & evaluation routines to a `Network`.
"""
def compile(self, optimizer,
loss=None,
metrics=None,
loss_weights=None,
sample_weight_mode=None,
weighted_metrics=None,
target_tensors=None,
**kwargs):
"""Configures the model for training.
# Arguments
optimizer: String (name of optimizer) or optimizer instance.
See [optimizers](/optimizers).
loss: String (name of objective function) or objective function.
See [losses](/losses).
If the model has multiple outputs, you can use a different loss
on each output by passing a dictionary or a list of losses.
The loss value that will be minimized by the model
will then be the sum of all individual losses.
metrics: List of metrics to be evaluated by the model
during training and testing.
Typically you will use `metrics=['accuracy']`.
To specify different metrics for different outputs of a
multi-output model, you could also pass a dictionary,
such as `metrics={'output_a': 'accuracy'}`.
loss_weights: Optional list or dictionary specifying scalar
coefficients (Python floats) to weight the loss contributions
of different model outputs.
The loss value that will be minimized by the model
will then be the *weighted sum* of all individual losses,
weighted by the `loss_weights` coefficients.
If a list, it is expected to have a 1:1 mapping
to the model's outputs. If a tensor, it is expected to map
output names (strings) to scalar coefficients.
sample_weight_mode: If you need to do timestep-wise
sample weighting (2D weights), set this to `"temporal"`.
`None` defaults to sample-wise weights (1D).
If the model has multiple outputs, you can use a different
`sample_weight_mode` on each output by passing a
dictionary or a list of modes.
weighted_metrics: List of metrics to be evaluated and weighted
by sample_weight or class_weight during training and testing.
target_tensors: By default, Keras will create placeholders for the
model's target, which will be fed with the target data during
training. If instead you would like to use your own
target tensors (in turn, Keras will not expect external
Numpy data for these targets at training time), you
can specify them via the `target_tensors` argument. It can be
a single tensor (for a single-output model), a list of tensors,
or a dict mapping output names to target tensors.
**kwargs: When using the Theano/CNTK backends, these arguments
are passed into `K.function`.
When using the TensorFlow backend,
these arguments are passed into `tf.Session.run`.
# Raises
ValueError: In case of invalid arguments for
`optimizer`, `loss`, `metrics` or `sample_weight_mode`.
"""
self.optimizer = optimizers.get(optimizer)
self.loss = loss or []
self.metrics = metrics or []
self.loss_weights = loss_weights
self.sample_weight_mode = sample_weight_mode
self.weighted_metrics = weighted_metrics
if not self.built:
# Model is not compilable because
# it does not know its number of inputs
# and outputs, nor their shapes and names.
# We will compile after the first
# time the model gets called on training data.
return
self._is_compiled = True
# Prepare loss functions.
if isinstance(loss, dict):
for name in loss:
if name not in self.output_names:
raise ValueError('Unknown entry in loss '
'dictionary: "' + name + '". '
'Only expected the following keys: ' +
str(self.output_names))
loss_functions = []
for name in self.output_names:
if name not in loss:
warnings.warn('Output "' + name +
'" missing from loss dictionary. '
'We assume this was done on purpose, '
'and we will not be expecting '
'any data to be passed to "' + name +
'" during training.', stacklevel=2)
loss_functions.append(losses.get(loss.get(name)))
elif isinstance(loss, list):
if len(loss) != len(self.outputs):
raise ValueError('When passing a list as loss, '
'it should have one entry per model outputs. '
'The model has ' + str(len(self.outputs)) +
' outputs, but you passed loss=' +
str(loss))
loss_functions = [losses.get(l) for l in loss]
else:
loss_function = losses.get(loss)
loss_functions = [loss_function for _ in range(len(self.outputs))]
self.loss_functions = loss_functions
weighted_losses = [
weighted_masked_objective(fn) for fn in loss_functions]
skip_target_indices = []
skip_target_weighing_indices = []
self._feed_outputs = []
self._feed_output_names = []
self._feed_output_shapes = []
self._feed_loss_fns = []
for i in range(len(weighted_losses)):
if weighted_losses[i] is None:
skip_target_indices.append(i)
skip_target_weighing_indices.append(i)
# Prepare output masks.
masks = self.compute_mask(self.inputs, mask=None)
if masks is None:
masks = [None for _ in self.outputs]
masks = to_list(masks)
# Prepare loss weights.
if loss_weights is None:
loss_weights_list = [1. for _ in range(len(self.outputs))]
elif isinstance(loss_weights, dict):
for name in loss_weights:
if name not in self.output_names:
raise ValueError('Unknown entry in loss_weights '
'dictionary: "' + name + '". '
'Only expected the following keys: ' +
str(self.output_names))
loss_weights_list = []
for name in self.output_names:
loss_weights_list.append(loss_weights.get(name, 1.))
elif isinstance(loss_weights, list):
if len(loss_weights) != len(self.outputs):
raise ValueError('When passing a list as loss_weights, '
'it should have one entry per model output. '
'The model has ' + str(len(self.outputs)) +
' outputs, but you passed loss_weights=' +
str(loss_weights))
loss_weights_list = loss_weights
else:
raise TypeError('Could not interpret loss_weights argument: ' +
str(loss_weights) +
' - expected a list of dicts.')
# Prepare targets of model.
self.targets = []
self._feed_targets = []
if target_tensors is not None:
if isinstance(target_tensors, list):
if len(target_tensors) != len(self.outputs):
raise ValueError(
'When passing a list as `target_tensors`, '
'it should have one entry per model output. '
'The model has ' + str(len(self.outputs)) +
' outputs, but you passed target_tensors=' +
str(target_tensors))
elif isinstance(target_tensors, dict):
for name in target_tensors:
if name not in self.output_names:
raise ValueError('Unknown entry in `target_tensors` '
'dictionary: "' + name + '". '
'Only expected the following keys: ' +
str(self.output_names))
tmp_target_tensors = []
for name in self.output_names:
tmp_target_tensors.append(target_tensors.get(name, None))
target_tensors = tmp_target_tensors
elif K.is_tensor(target_tensors):
if len(self.outputs) != 1:
raise ValueError('The model has ' + str(len(self.outputs)) +
' outputs, but you passed a single tensor as '
'`target_tensors`. Expected a list or a dict '
'of tensors.')
target_tensors = [target_tensors]
else:
raise TypeError('Expected `target_tensors` to be a tensor, '
'a list of tensors, or dict of tensors, but got:',
target_tensors)
for i in range(len(self.outputs)):
if i in skip_target_indices:
self.targets.append(None)
else:
shape = K.int_shape(self.outputs[i])
name = self.output_names[i]
if target_tensors is not None:
target = target_tensors[i]
else:
target = None
if target is None or K.is_placeholder(target):
if target is None:
target = K.placeholder(
ndim=len(shape),
name=name + '_target',
sparse=K.is_sparse(self.outputs[i]),
dtype=K.dtype(self.outputs[i]))
self._feed_targets.append(target)
self._feed_outputs.append(self.outputs[i])
self._feed_output_names.append(name)
self._feed_output_shapes.append(shape)
self._feed_loss_fns.append(self.loss_functions[i])
else:
skip_target_weighing_indices.append(i)
self.targets.append(target)
# Prepare sample weights.
sample_weights = []
sample_weight_modes = []
if isinstance(sample_weight_mode, dict):
for name in sample_weight_mode:
if name not in self.output_names:
raise ValueError('Unknown entry in '
'sample_weight_mode dictionary: "' +
name + '". '
'Only expected the following keys: ' +
str(self.output_names))
for i, name in enumerate(self.output_names):
if i in skip_target_weighing_indices:
weight = None
sample_weight_modes.append(None)
else:
if name not in sample_weight_mode:
raise ValueError('Output "' + name +
'" missing from sample_weight_modes '
'dictionary')
if sample_weight_mode.get(name) == 'temporal':
weight = K.placeholder(ndim=2,
name=name + '_sample_weights')
sample_weight_modes.append('temporal')
else:
weight = K.placeholder(ndim=1,
name=name + '_sample_weights')
sample_weight_modes.append(None)
sample_weights.append(weight)
elif isinstance(sample_weight_mode, list):
if len(sample_weight_mode) != len(self.outputs):
raise ValueError('When passing a list as sample_weight_mode, '
'it should have one entry per model output. '
'The model has ' + str(len(self.outputs)) +
' outputs, but you passed '
'sample_weight_mode=' +
str(sample_weight_mode))
for i in range(len(self.output_names)):
if i in skip_target_weighing_indices:
weight = None
sample_weight_modes.append(None)
else:
mode = sample_weight_mode[i]
name = self.output_names[i]
if mode == 'temporal':
weight = K.placeholder(ndim=2,
name=name + '_sample_weights')
sample_weight_modes.append('temporal')
else:
weight = K.placeholder(ndim=1,
name=name + '_sample_weights')
sample_weight_modes.append(None)
sample_weights.append(weight)
else:
for i, name in enumerate(self.output_names):
if i in skip_target_weighing_indices:
sample_weight_modes.append(None)
sample_weights.append(None)
else:
if sample_weight_mode == 'temporal':
sample_weights.append(
K.placeholder(ndim=2,
name=name + '_sample_weights'))
sample_weight_modes.append('temporal')
else:
sample_weights.append(
K.placeholder(ndim=1,
name=name + '_sample_weights'))
sample_weight_modes.append(None)
self.sample_weight_modes = sample_weight_modes
self._feed_sample_weight_modes = []
for i in range(len(self.outputs)):
if i not in skip_target_weighing_indices:
self._feed_sample_weight_modes.append(
self.sample_weight_modes[i])
# Prepare metrics.
self.metrics_names = ['loss']
self.metrics_tensors = []
# Compute total loss.
total_loss = None
with K.name_scope('loss'):
for i in range(len(self.outputs)):
if i in skip_target_indices:
continue
y_true = self.targets[i]
y_pred = self.outputs[i]
weighted_loss = weighted_losses[i]
sample_weight = sample_weights[i]
mask = masks[i]
loss_weight = loss_weights_list[i]
with K.name_scope(self.output_names[i] + '_loss'):
output_loss = weighted_loss(y_true, y_pred,
sample_weight, mask)
if len(self.outputs) > 1:
self.metrics_tensors.append(output_loss)
self.metrics_names.append(self.output_names[i] + '_loss')
if total_loss is None:
total_loss = loss_weight * output_loss
else:
total_loss += loss_weight * output_loss
if total_loss is None:
if not self.losses:
raise ValueError('The model cannot be compiled '
'because it has no loss to optimize.')
else:
total_loss = 0.
# Add regularization penalties
# and other layer-specific losses.
for loss_tensor in self.losses:
total_loss += loss_tensor
# List of same size as output_names.
# contains tuples (metrics for output, names of metrics).
nested_metrics = collect_metrics(metrics, self.output_names)
nested_weighted_metrics = collect_metrics(weighted_metrics,
self.output_names)
self.metrics_updates = []
self.stateful_metric_names = []
self.stateful_metric_functions = []
def handle_metrics(metrics, weights=None):
metric_name_prefix = 'weighted_' if weights is not None else ''
for metric in metrics:
if metric in ('accuracy', 'acc', 'crossentropy', 'ce'):
# custom handling of accuracy/crossentropy
# (because of class mode duality)
output_shape = K.int_shape(self.outputs[i])
if (output_shape[-1] == 1 or
self.loss_functions[i] == losses.binary_crossentropy):
# case: binary accuracy/crossentropy
if metric in ('accuracy', 'acc'):
metric_fn = metrics_module.binary_accuracy
elif metric in ('crossentropy', 'ce'):
metric_fn = metrics_module.binary_crossentropy
elif (self.loss_functions[i] ==
losses.sparse_categorical_crossentropy):
# case: categorical accuracy/crossentropy
# with sparse targets
if metric in ('accuracy', 'acc'):
metric_fn = metrics_module.sparse_categorical_accuracy
elif metric in ('crossentropy', 'ce'):
metric_fn = (
metrics_module.sparse_categorical_crossentropy)
else:
# case: categorical accuracy/crossentropy
if metric in ('accuracy', 'acc'):
metric_fn = metrics_module.categorical_accuracy
elif metric in ('crossentropy', 'ce'):
metric_fn = metrics_module.categorical_crossentropy
if metric in ('accuracy', 'acc'):
suffix = 'acc'
elif metric in ('crossentropy', 'ce'):
suffix = 'ce'
weighted_metric_fn = weighted_masked_objective(metric_fn)
metric_name = metric_name_prefix + suffix
else:
metric_fn = metrics_module.get(metric)
weighted_metric_fn = weighted_masked_objective(metric_fn)
# Get metric name as string
if hasattr(metric_fn, 'name'):
metric_name = metric_fn.name
else:
metric_name = metric_fn.__name__
metric_name = metric_name_prefix + metric_name
with K.name_scope(metric_name):
metric_result = weighted_metric_fn(y_true, y_pred,
weights=weights,
mask=masks[i])
# Append to self.metrics_names, self.metric_tensors,
# self.stateful_metric_names
if len(self.output_names) > 1:
metric_name = self.output_names[i] + '_' + metric_name
# Dedupe name
j = 1
base_metric_name = metric_name
while metric_name in self.metrics_names:
metric_name = base_metric_name + '_' + str(j)
j += 1
self.metrics_names.append(metric_name)
self.metrics_tensors.append(metric_result)
# Keep track of state updates created by
# stateful metrics (i.e. metrics layers).
if isinstance(metric_fn, Layer) and metric_fn.stateful:
self.stateful_metric_names.append(metric_name)
self.stateful_metric_functions.append(metric_fn)
self.metrics_updates += metric_fn.updates
with K.name_scope('metrics'):
for i in range(len(self.outputs)):
if i in skip_target_indices:
continue
y_true = self.targets[i]
y_pred = self.outputs[i]
weights = sample_weights[i]
output_metrics = nested_metrics[i]
output_weighted_metrics = nested_weighted_metrics[i]
handle_metrics(output_metrics)
handle_metrics(output_weighted_metrics, weights=weights)
# Prepare gradient updates and state updates.
self.total_loss = total_loss
self.sample_weights = sample_weights
self._feed_sample_weights = []
for i in range(len(self.sample_weights)):
if i not in skip_target_weighing_indices:
self._feed_sample_weights.append(sample_weights[i])
# Functions for train, test and predict will
# be compiled lazily when required.
# This saves time when the user is not using all functions.
self._function_kwargs = kwargs
self.train_function = None
self.test_function = None
self.predict_function = None
# Collected trainable weights, sorted in topological order.
trainable_weights = self.trainable_weights
self._collected_trainable_weights = trainable_weights
def _check_trainable_weights_consistency(self):
"""Check trainable weights count consistency.
This will raise a warning if `trainable_weights` and
`_collected_trainable_weights` are inconsistent (i.e. have different
number of parameters).
Inconsistency will typically arise when one modifies `model.trainable`
without calling `model.compile` again.
"""
if not hasattr(self, '_collected_trainable_weights'):
return
if (len(self.trainable_weights) !=
len(self._collected_trainable_weights)):
warnings.warn(UserWarning(
'Discrepancy between trainable weights and collected trainable'
' weights, did you set `model.trainable` without calling'
' `model.compile` after ?'))
def _make_train_function(self):
if not hasattr(self, 'train_function'):
raise RuntimeError('You must compile your model before using it.')
self._check_trainable_weights_consistency()
if self.train_function is None:
inputs = (self._feed_inputs +
self._feed_targets +
self._feed_sample_weights)
if self._uses_dynamic_learning_phase():
inputs += [K.learning_phase()]
with K.name_scope('training'):
with K.name_scope(self.optimizer.__class__.__name__):
training_updates = self.optimizer.get_updates(
params=self._collected_trainable_weights,
loss=self.total_loss)
updates = (self.updates +
training_updates +
self.metrics_updates)
# Gets loss and metrics. Updates weights at each call.
self.train_function = K.function(
inputs,
[self.total_loss] + self.metrics_tensors,
updates=updates,
name='train_function',
**self._function_kwargs)
def _make_test_function(self):
if not hasattr(self, 'test_function'):
raise RuntimeError('You must compile your model before using it.')
if self.test_function is None:
inputs = (self._feed_inputs +
self._feed_targets +
self._feed_sample_weights)
if self._uses_dynamic_learning_phase():
inputs += [K.learning_phase()]
# Return loss and metrics, no gradient updates.
# Does update the network states.
self.test_function = K.function(
inputs,
[self.total_loss] + self.metrics_tensors,
updates=self.state_updates + self.metrics_updates,
name='test_function',
**self._function_kwargs)
def _make_predict_function(self):
if not hasattr(self, 'predict_function'):
self.predict_function = None
if self.predict_function is None:
if self._uses_dynamic_learning_phase():
inputs = self._feed_inputs + [K.learning_phase()]
else:
inputs = self._feed_inputs
# Gets network outputs. Does not update weights.
# Does update the network states.
kwargs = getattr(self, '_function_kwargs', {})
self.predict_function = K.function(inputs,
self.outputs,
updates=self.state_updates,
name='predict_function',
**kwargs)
def _uses_dynamic_learning_phase(self):
return (self.uses_learning_phase and
not isinstance(K.learning_phase(), int))
def _set_inputs(self, inputs, outputs=None, training=None):
"""Set model's input and output specs based on the input data received.
This is to be used for Model subclasses, which do not know at instantiation
time what their inputs look like.
# Arguments
inputs: Single array, or list of arrays. The arrays could be placeholders,
Numpy arrays, or data tensors.
- if placeholders: the model is built on top of these placeholders,
and we expect Numpy data to be fed for them when calling `fit`/etc.
- if Numpy data: we create placeholders matching the shape of the Numpy
arrays. We expect Numpy data to be fed for these placeholders
when calling `fit`/etc.
- if data tensors: the model is built on top of these tensors.
We do not expect any Numpy data to be provided when calling `fit`/etc.
outputs: Optional output tensors (if already computed by running
the model).
training: Boolean or None. Only relevant in symbolic mode. Specifies
whether to build the model's graph in inference mode (False), training
mode (True), or using the Keras learning phase (None).
"""
if self.__class__.__name__ == 'Sequential':
# Note: we can't test whether the model
# is `Sequential` via `isinstance`
# since `Sequential` depends on `Model`.
if isinstance(inputs, list):
assert len(inputs) == 1
inputs = inputs[0]
self.build(input_shape=(None,) + inputs.shape[1:])
return
if self.inputs:
raise ValueError('Model inputs are already set.')
# On-the-fly setting of symbolic model inputs
# (either by using the tensor provided,
# or by creating a placeholder if Numpy data was provided).
self.inputs = []
self.input_names = []
self._feed_inputs = []
self._feed_input_names = []
self._feed_input_shapes = []
inputs = to_list(inputs, allow_tuple=True)
for i, v in enumerate(inputs):
name = 'input_%d' % (i + 1)
self.input_names.append(name)
if isinstance(v, list):
v = np.asarray(v)
if v.ndim == 1:
v = np.expand_dims(v, 1)
if isinstance(v, (np.ndarray)):
# We fix the placeholder shape except the batch size.
# This is suboptimal, but it is the best we can do with the info
# we have. The user should call `model._set_inputs(placeholders)`
# to specify custom placeholders if the need arises.
shape = (None,) + v.shape[1:]
placeholder = K.placeholder(shape=shape, name=name)
self.inputs.append(placeholder)
self._feed_inputs.append(placeholder)
self._feed_input_names.append(name)
self._feed_input_shapes.append(shape)
else:
# Assumed tensor - TODO(fchollet) additional type check?
self.inputs.append(v)
if K.is_placeholder(v):
self._feed_inputs.append(v)
self._feed_input_names.append(name)
self._feed_input_shapes.append(K.int_shape(v))
if outputs is None:
# Obtain symbolic outputs by calling the model.
if self._expects_training_arg:
outputs = self.call(unpack_singleton(self.inputs), training=training)
else:
outputs = self.call(unpack_singleton(self.inputs))
outputs = to_list(outputs, allow_tuple=True)
self.outputs = outputs
self.output_names = [
'output_%d' % (i + 1) for i in range(len(self.outputs))]
self.built = True
def _standardize_user_data(self, x,
y=None,
sample_weight=None,
class_weight=None,
check_array_lengths=True,
batch_size=None):
all_inputs = []
if not self.built:
# We need to use `x` to set the model inputs.
# We type-check that `x` and `y` are either single arrays
# or lists of arrays.
if isinstance(x, (list, tuple)):
if not all(isinstance(v, np.ndarray) or
K.is_tensor(v) for v in x):
raise ValueError('Please provide as model inputs '
'either a single '
'array or a list of arrays. '
'You passed: x=' + str(x))
all_inputs += list(x)
elif isinstance(x, dict):
raise ValueError('Please do not pass a dictionary '
'as model inputs.')
else:
if not isinstance(x, np.ndarray) and not K.is_tensor(x):
raise ValueError('Please provide as model inputs '
'either a single '
'array or a list of arrays. '
'You passed: x=' + str(x))
all_inputs.append(x)
# Build the model using the retrieved inputs (value or symbolic).
# If values, then in symbolic-mode placeholders will be created
# to match the value shapes.
if not self.inputs:
self._set_inputs(x)
if y is not None:
if not self.optimizer:
raise RuntimeError('You must compile a model before '
'training/testing. '
'Use `model.compile(optimizer, loss)`.')
if not self._is_compiled:
# On-the-fly compilation of the model.
# We need to use `y` to set the model targets.
if isinstance(y, (list, tuple)):
if not all(isinstance(v, np.ndarray) or
K.is_tensor(v) for v in y):
raise ValueError('Please provide as model targets '
'either a single '
'array or a list of arrays. '
'You passed: y=' + str(y))
elif isinstance(y, dict):
raise ValueError('Please do not pass a dictionary '
'as model targets.')
else:
if not isinstance(y, np.ndarray) and not K.is_tensor(y):
raise ValueError('Please provide as model targets '
'either a single '
'array or a list of arrays. '
'You passed: y=' + str(y))
# Typecheck that all inputs are *either* value *or* symbolic.
if y is not None:
all_inputs += to_list(y, allow_tuple=True)
if any(K.is_tensor(v) for v in all_inputs):
if not all(K.is_tensor(v) for v in all_inputs):
raise ValueError('Do not pass inputs that mix Numpy '
'arrays and symbolic tensors. '
'You passed: x=' + str(x) +
'; y=' + str(y))
# Handle target tensors if any passed.
y = to_list(y, allow_tuple=True)
target_tensors = [v for v in y if K.is_tensor(v)]
if not target_tensors:
target_tensors = None
self.compile(optimizer=self.optimizer,
loss=self.loss,
metrics=self.metrics,
loss_weights=self.loss_weights,
target_tensors=target_tensors)
# If `x` and `y` were all symbolic,
# then the model should not be fed any inputs and targets.
# Note: in this case, `any` and `all` are equivalent since we disallow
# mixed symbolic/value inputs.
if any(K.is_tensor(v) for v in all_inputs):
return [], [], []
# What follows is input validation and standardization to list format,
# in the case where all inputs are value arrays.
if not self._is_graph_network:
# Case: symbolic-mode subclassed network.
# Do not do shape validation.
feed_input_names = self._feed_input_names
feed_input_shapes = None
else:
# Case: symbolic-mode graph network.
# In this case, we run extensive shape validation checks.
feed_input_names = self._feed_input_names
feed_input_shapes = self._feed_input_shapes
# Standardize the inputs.
x = standardize_input_data(
x,
feed_input_names,
feed_input_shapes,
check_batch_axis=False, # Don't enforce the batch size.
exception_prefix='input')
if y is not None:
if not self._is_graph_network:
feed_output_names = self._feed_output_names
feed_output_shapes = None
# Sample weighting not supported in this case.
# TODO: consider supporting it.
feed_sample_weight_modes = [None for _ in self.outputs]
else:
feed_output_names = self._feed_output_names
feed_sample_weight_modes = self._feed_sample_weight_modes
feed_output_shapes = []
for output_shape, loss_fn in zip(self._feed_output_shapes,
self._feed_loss_fns):
if loss_fn is losses.sparse_categorical_crossentropy:
if K.image_data_format() == 'channels_first' and len(
output_shape) in [4, 5]:
feed_output_shapes.append(
(output_shape[0], 1) + output_shape[2:])
else:
feed_output_shapes.append(output_shape[:-1] + (1,))
elif (not hasattr(loss_fn, '__name__') or
getattr(losses, loss_fn.__name__, None) is None):
# If `loss_fn` is not a function (e.g. callable class)
# or if it not in the `losses` module, then
# it is a user-defined loss and we make no assumptions
# about it.
feed_output_shapes.append(None)
else:
feed_output_shapes.append(output_shape)
# Standardize the outputs.
y = standardize_input_data(
y,
feed_output_names,
feed_output_shapes,
check_batch_axis=False, # Don't enforce the batch size.
exception_prefix='target')
# Generate sample-wise weight values given the `sample_weight` and
# `class_weight` arguments.
sample_weights = standardize_sample_weights(
sample_weight, feed_output_names)
class_weights = standardize_class_weights(
class_weight, feed_output_names)
sample_weights = [
standardize_weights(ref, sw, cw, mode)
for (ref, sw, cw, mode) in
zip(y, sample_weights, class_weights,
feed_sample_weight_modes)
]
# Check that all arrays have the same length.
check_array_length_consistency(x, y, sample_weights)
if self._is_graph_network:
# Additional checks to avoid users mistakenly
# using improper loss fns.
check_loss_and_target_compatibility(
y, self._feed_loss_fns, feed_output_shapes)
else:
y = []
sample_weights = []
if self.stateful and batch_size:
# Check that for stateful networks, number of samples is a multiple
# of the static batch size.
if x[0].shape[0] % batch_size != 0:
raise ValueError('In a stateful network, '
'you should only pass inputs with '
'a number of samples that can be '
'divided by the batch size. Found: ' +
str(x[0].shape[0]) + ' samples')
return x, y, sample_weights
def fit(self,
x=None,
y=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
validation_split=0.,
validation_data=None,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
**kwargs):
"""Trains the model for a given number of epochs (iterations on a dataset).
# Arguments
x: Numpy array of training data (if the model has a single input),
or list of Numpy arrays (if the model has multiple inputs).
If input layers in the model are named, you can also pass a
dictionary mapping input names to Numpy arrays.
`x` can be `None` (default) if feeding from
framework-native tensors (e.g. TensorFlow data tensors).
y: Numpy array of target (label) data
(if the model has a single output),
or list of Numpy arrays (if the model has multiple outputs).
If output layers in the model are named, you can also pass a
dictionary mapping output names to Numpy arrays.
`y` can be `None` (default) if feeding from
framework-native tensors (e.g. TensorFlow data tensors).
batch_size: Integer or `None`.
Number of samples per gradient update.
If unspecified, `batch_size` will default to 32.
epochs: Integer. Number of epochs to train the model.
An epoch is an iteration over the entire `x` and `y`
data provided.
Note that in conjunction with `initial_epoch`,
`epochs` is to be understood as "final epoch".
The model is not trained for a number of iterations
given by `epochs`, but merely until the epoch
of index `epochs` is reached.
verbose: Integer. 0, 1, or 2. Verbosity mode.
0 = silent, 1 = progress bar, 2 = one line per epoch.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during training.
See [callbacks](/callbacks).
validation_split: Float between 0 and 1.
Fraction of the training data to be used as validation data.
The model will set apart this fraction of the training data,
will not train on it, and will evaluate
the loss and any model metrics
on this data at the end of each epoch.
The validation data is selected from the last samples
in the `x` and `y` data provided, before shuffling.
validation_data: tuple `(x_val, y_val)` or tuple
`(x_val, y_val, val_sample_weights)` on which to evaluate
the loss and any model metrics at the end of each epoch.
The model will not be trained on this data.
`validation_data` will override `validation_split`.
shuffle: Boolean (whether to shuffle the training data
before each epoch) or str (for 'batch').
'batch' is a special option for dealing with the
limitations of HDF5 data; it shuffles in batch-sized chunks.
Has no effect when `steps_per_epoch` is not `None`.
class_weight: Optional dictionary mapping class indices (integers)
to a weight (float) value, used for weighting the loss function
(during training only).
This can be useful to tell the model to
"pay more attention" to samples from
an under-represented class.
sample_weight: Optional Numpy array of weights for
the training samples, used for weighting the loss function
(during training only). You can either pass a flat (1D)
Numpy array with the same length as the input samples
(1:1 mapping between weights and samples),
or in the case of temporal data,
you can pass a 2D array with shape
`(samples, sequence_length)`,
to apply a different weight to every timestep of every sample.
In this case you should make sure to specify
`sample_weight_mode="temporal"` in `compile()`.
initial_epoch: Integer.
Epoch at which to start training
(useful for resuming a previous training run).
steps_per_epoch: Integer or `None`.
Total number of steps (batches of samples)
before declaring one epoch finished and starting the
next epoch. When training with input tensors such as
TensorFlow data tensors, the default `None` is equal to
the number of samples in your dataset divided by
the batch size, or 1 if that cannot be determined.
validation_steps: Only relevant if `steps_per_epoch`
is specified. Total number of steps (batches of samples)
to validate before stopping.
# Returns
A `History` object. Its `History.history` attribute is
a record of training loss values and metrics values
at successive epochs, as well as validation loss values
and validation metrics values (if applicable).
# Raises
RuntimeError: If the model was never compiled.
ValueError: In case of mismatch between the provided input data
and what the model expects.
"""
# Backwards compatibility
if batch_size is None and steps_per_epoch is None:
batch_size = 32
# Legacy support
if 'nb_epoch' in kwargs:
warnings.warn('The `nb_epoch` argument in `fit` '
'has been renamed `epochs`.', stacklevel=2)
epochs = kwargs.pop('nb_epoch')
if kwargs:
raise TypeError('Unrecognized keyword arguments: ' + str(kwargs))
if x is None and y is None and steps_per_epoch is None:
raise ValueError('If fitting from data tensors, '
'you should specify the `steps_per_epoch` '
'argument.')
# Validate user data.
x, y, sample_weights = self._standardize_user_data(
x, y,
sample_weight=sample_weight,
class_weight=class_weight,
batch_size=batch_size)
# Prepare validation data.
do_validation = False
if validation_data:
do_validation = True
if len(validation_data) == 2:
val_x, val_y = validation_data
val_sample_weight = None
elif len(validation_data) == 3:
val_x, val_y, val_sample_weight = validation_data
else:
raise ValueError('When passing validation_data, '
'it must contain 2 (x_val, y_val) '
'or 3 (x_val, y_val, val_sample_weights) '
'items, however it contains %d items' %
len(validation_data))
val_x, val_y, val_sample_weights = self._standardize_user_data(
val_x, val_y,
sample_weight=val_sample_weight,
batch_size=batch_size)
if self._uses_dynamic_learning_phase():
val_ins = val_x + val_y + val_sample_weights + [0.]
else:
val_ins = val_x + val_y + val_sample_weights
elif validation_split and 0. < validation_split < 1.:
if any(K.is_tensor(t) for t in x):
raise ValueError(
'If your data is in the form of symbolic tensors, '
'you cannot use `validation_split`.')
do_validation = True
if hasattr(x[0], 'shape'):
split_at = int(int(x[0].shape[0]) * (1. - validation_split))
else:
split_at = int(len(x[0]) * (1. - validation_split))
x, val_x = (slice_arrays(x, 0, split_at),
slice_arrays(x, split_at))
y, val_y = (slice_arrays(y, 0, split_at),
slice_arrays(y, split_at))
sample_weights, val_sample_weights = (
slice_arrays(sample_weights, 0, split_at),
slice_arrays(sample_weights, split_at))
if self._uses_dynamic_learning_phase():
val_ins = val_x + val_y + val_sample_weights + [0.]
else:
val_ins = val_x + val_y + val_sample_weights
elif validation_steps: