-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
executable file
·256 lines (240 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os, sys, time, pdb
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models.models_32 import *
from utils.misc import *
from utils.eval import *
#############################
# Hyperparameters
#############################
seed = 123
lr = 0.0002
beta1 = 0.0
beta2 = 0.9
num_workers = 2
data_path = "dataset"
dis_batch_size = 64
gen_batch_size = 128
max_epoch = 800
lambda_kld = 1e-6
latent_dim = 128
cont_dim = 16
cont_k = 8192
cont_temp = 0.07
# multi-scale contrastive setting
layers = ["b1", "final"]
name =("").join(layers)
log_fname = f"logs/cifar10-{name}"
fid_fname = f"logs/FID_cifar10-{name}"
viz_dir = f"viz/cifar10-{name}"
models_dir = f"saved_models/cifar10-{name}"
if not os.path.exists("logs"):
os.makedirs("logs")
if not os.path.exists(viz_dir):
os.makedirs(viz_dir)
if not os.path.exists(models_dir):
os.makedirs(models_dir)
lambda_cont = 1.0/len(layers)
fix_seed(random_seed=seed)
#############################
# Make and initialize the Networks
#############################
encoder = torch.nn.DataParallel(Encoder(latent_dim)).cuda()
decoder = torch.nn.DataParallel(Decoder(latent_dim)).cuda()
dual_encoder = torch.nn.DataParallel(DualEncoder(cont_dim)).cuda()
encoder.apply(weights_init)
decoder.apply(weights_init)
dual_encoder.apply(weights_init)
dual_encoder_M = torch.nn.DataParallel(DualEncoder(cont_dim)).cuda()
for p, p_momentum in zip(dual_encoder.parameters(), dual_encoder_M.parameters()):
p_momentum.data.copy_(p.data)
p_momentum.requires_grad = False
gen_avg_param = copy_params(decoder)
d_queue, d_queue_ptr = {}, {}
for layer in layers:
d_queue[layer] = torch.randn(cont_dim, cont_k).cuda()
d_queue[layer] = F.normalize(d_queue[layer], dim=0)
d_queue_ptr[layer] = torch.zeros(1, dtype=torch.long)
#############################
# Make the optimizers
#############################
opt_encoder = torch.optim.Adam(filter(lambda p: p.requires_grad,
encoder.parameters()),
lr, (beta1, beta2))
opt_decoder = torch.optim.Adam(filter(lambda p: p.requires_grad,
decoder.parameters()),
lr, (beta1, beta2))
shared_params = list(dual_encoder.module.block1.parameters()) + \
list(dual_encoder.module.block2.parameters()) + \
list(dual_encoder.module.block3.parameters()) + \
list(dual_encoder.module.block4.parameters()) + \
list(dual_encoder.module.l5.parameters())
opt_shared = torch.optim.Adam(filter(lambda p: p.requires_grad,
shared_params),
lr, (beta1, beta2))
opt_disc_head = torch.optim.Adam(filter(lambda p: p.requires_grad,
dual_encoder.module.head_disc.parameters()),
lr, (beta1, beta2))
cont_params = list(dual_encoder.module.head_b1.parameters()) + \
list(dual_encoder.module.head_b2.parameters()) + \
list(dual_encoder.module.head_b3.parameters()) + \
list(dual_encoder.module.head_b4.parameters())
opt_cont_head = torch.optim.Adam(filter(lambda p: p.requires_grad, cont_params),
lr, (beta1, beta2))
#############################
# Make the dataloaders
#############################
ds = torchvision.datasets.CIFAR10(data_path, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)),
]))
train_loader = torch.utils.data.DataLoader(ds, batch_size=dis_batch_size,
shuffle=True, pin_memory=True, drop_last=True,
num_workers=num_workers)
ds = torchvision.datasets.CIFAR10(data_path, train=False, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)),
]))
test_loader = torch.utils.data.DataLoader(ds, batch_size=dis_batch_size,
shuffle=True, pin_memory=True, drop_last=True,
num_workers=num_workers)
global_steps = 0
# train loop
for epoch in tqdm(range(max_epoch), desc='total progress'):
encoder.train()
decoder.train()
dual_encoder.train()
for iter_idx, (imgs, _) in enumerate(tqdm(train_loader)):
curr_bs = imgs.shape[0]
curr_log = f"{epoch}:{iter_idx}\t"
real_imgs = imgs.type(torch.cuda.FloatTensor)
z = torch.cuda.FloatTensor(np.random.normal(0, 1, (imgs.shape[0], latent_dim)))
# ---------------------
# Train Discriminator
# ---------------------
opt_shared.zero_grad()
opt_disc_head.zero_grad()
real_validity = dual_encoder(real_imgs, mode="dis")
fake_imgs = decoder(z).detach()
fake_validity = dual_encoder(fake_imgs, mode="dis")
rec, mu, logvar = f_recon(real_imgs, encoder, decoder, latent_dim)
rec_validity = dual_encoder(rec, mode="dis")
# cal loss
d_loss = torch.mean(nn.ReLU(inplace=True)(1.0 - real_validity)) + \
torch.mean(nn.ReLU(inplace=True)(1.0 + fake_validity))*0.5 + \
torch.mean(nn.ReLU(inplace=True)(1.0 + rec_validity))*0.5
d_loss.backward()
curr_log += f"d:{d_loss.item():.2f}\t"
opt_shared.step()
opt_disc_head.step()
# -----------------
# Train Generator
# -----------------
if global_steps % 5 == 0:
opt_decoder.zero_grad()
opt_encoder.zero_grad()
gen_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (gen_batch_size, latent_dim)))
gen_imgs = decoder(gen_z)
fake_validity = dual_encoder(gen_imgs, mode="dis")
rec, mu, logvar = f_recon(real_imgs, encoder, decoder, latent_dim)
rec_validity = dual_encoder(rec, mode="dis")
# cal loss
g_loss = -(torch.mean(fake_validity)*0.5 + torch.mean(rec_validity)*0.5)
kld = (-0.5 * torch.sum(1+logvar-mu.pow(2)-logvar.exp()))*lambda_kld
(g_loss+kld).backward()
opt_decoder.step()
opt_encoder.step()
curr_log += f"g:{g_loss.item():.2f}\t"
# contrastive
opt_encoder.zero_grad()
opt_decoder.zero_grad()
opt_shared.zero_grad()
opt_cont_head.zero_grad()
rec, mu, logvar = f_recon(real_imgs, encoder, decoder, latent_dim)
im_k = real_imgs
im_q = rec
with torch.no_grad():
# update momentum encoder
for p, p_mom in zip(dual_encoder.parameters(), dual_encoder_M.parameters()):
p_mom.data = (p_mom.data*0.999) + (p.data*(1.0-0.999))
d_k = dual_encoder_M(im_k, mode="cont")
for l in layers:
d_k[l] = F.normalize(d_k[l], dim=1)
total_cont = torch.tensor(0.0).cuda()
d_q = dual_encoder(im_q, mode="cont")
for l in layers:
q = F.normalize(d_q[l], dim=1)
k = d_k[l]
queue = d_queue[l]
l_pos = torch.einsum("nc,nc->n", [k,q]).unsqueeze(-1)
l_neg = torch.einsum('nc,ck->nk', [q,queue.detach()])
logits = torch.cat([l_pos, l_neg], dim=1) / cont_temp#0.07
labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda()
cont_loss = nn.CrossEntropyLoss()(logits, labels) * lambda_cont
total_cont += cont_loss
acc1, acc5 = accuracy(logits, labels, topk=(1, 5))
curr_log += f"cont{l}:{cont_loss.item():.1f}\t"
curr_log += f"acc1{l}:{acc1.item():.1f}\t"
curr_log += f"acc5{l}:{acc5.item():.1f}\t"
kld = (-0.5 * torch.sum(1+logvar-mu.pow(2)-logvar.exp()))*lambda_kld
(total_cont+kld).backward()
opt_encoder.step()
opt_decoder.step()
opt_shared.step()
opt_cont_head.step()
for l in layers:
ptr = int(d_queue_ptr[l])
d_queue[l][:, ptr:(ptr+curr_bs)] = d_k[l].transpose(0,1)
ptr = (ptr+curr_bs)%cont_k # move the pointer ahead
d_queue_ptr[l][0] = ptr
with torch.no_grad():
rec_pix = torch.nn.MSELoss()(im_q, im_k).mean()
# moving average weight
for p, avg_p in zip(decoder.parameters(), gen_avg_param):
avg_p.mul_(0.999).add_(0.001, p.data)
if global_steps%250 == 0:
print_and_save(curr_log, log_fname)
viz_img = im_k[0:8].view(8,3,32,32)
viz_rec = im_q[0:].view(curr_bs,3,32,32)
out = torch.cat((viz_img, viz_rec), dim=0)
fname = os.path.join(viz_dir, f"{global_steps}_recon.png")
disp_images(out, fname, 8, norm="0.5")
fname = os.path.join(viz_dir, f"{global_steps}_sample.png")
disp_images(fake_imgs.view(-1,3,32,32), fname, 8, norm="0.5")
global_steps += 1
if epoch % 5 == 0:
decoder.eval()
encoder.eval()
backup_param = copy_params(decoder)
load_params(decoder, gen_avg_param)
fid_sample = compute_fid_sample(decoder, latent_dim)
fid_recon = compute_fid_recon(encoder, decoder, test_loader, latent_dim)
S = f"epoch:{epoch} sample:{fid_sample} recon:{fid_recon}"
print_and_save(S, fid_fname)
# save checkpoints
torch.save(encoder.state_dict(), os.path.join(models_dir, f"{epoch}_encoder.sd"))
torch.save(decoder.state_dict(), os.path.join(models_dir, f"{epoch}_decoder_avg.sd"))
load_params(decoder, backup_param)
torch.save(decoder.state_dict(), os.path.join(models_dir, f"{epoch}_decoder.sd"))
torch.save(dual_encoder.state_dict(), os.path.join(models_dir, f"{epoch}_dual_encoder.sd"))
torch.save(dual_encoder_M.state_dict(), os.path.join(models_dir, f"{epoch}_dual_encoder_M.sd"))
torch.save(opt_encoder.state_dict(), os.path.join(models_dir, f"{epoch}_opt_encoder.sd"))
torch.save(opt_decoder.state_dict(), os.path.join(models_dir, f"{epoch}_opt_decoder.sd"))
torch.save(opt_shared.state_dict(), os.path.join(models_dir, f"{epoch}_opt_shared.sd"))
torch.save(opt_cont_head.state_dict(), os.path.join(models_dir, f"{epoch}_opt_cont_head.sd"))
torch.save(opt_disc_head.state_dict(), os.path.join(models_dir, f"{epoch}_opt_disc_head.sd"))
for layer in layers:
torch.save(d_queue[layer], os.path.join(models_dir, f"{epoch}_{layer}_queue.sd"))
torch.save(d_queue_ptr[layer], os.path.join(models_dir, f"{epoch}_{layer}_queueptr.sd"))
encoder.train()
decoder.train()