-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
64 lines (53 loc) · 2.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import json
import random
import argparse
from tqdm import tqdm
from termcolor import cprint
from pptree import print_tree
from prettytable import PrettyTable
from utils import (
Agent, Group, parse_hierarchy, parse_group_info, setup_model,
load_data, create_question, determine_difficulty,
process_basic_query, process_intermediate_query, process_advanced_query
)
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='medqa')
parser.add_argument('--model', type=str, default='gpt-4o-mini')
parser.add_argument('--difficulty', type=str, default='adaptive')
parser.add_argument('--num_samples', type=int, default=100)
args = parser.parse_args()
model, client = setup_model(args.model)
test_qa, examplers = load_data(args.dataset)
agent_emoji = ['\U0001F468\u200D\u2695\uFE0F', '\U0001F468\U0001F3FB\u200D\u2695\uFE0F', '\U0001F469\U0001F3FC\u200D\u2695\uFE0F', '\U0001F469\U0001F3FB\u200D\u2695\uFE0F', '\U0001f9d1\u200D\u2695\uFE0F', '\U0001f9d1\U0001f3ff\u200D\u2695\uFE0F', '\U0001f468\U0001f3ff\u200D\u2695\uFE0F', '\U0001f468\U0001f3fd\u200D\u2695\uFE0F', '\U0001f9d1\U0001f3fd\u200D\u2695\uFE0F', '\U0001F468\U0001F3FD\u200D\u2695\uFE0F']
random.shuffle(agent_emoji)
results = []
for no, sample in enumerate(tqdm(test_qa)):
if no == args.num_samples:
break
print(f"\n[INFO] no: {no}")
total_api_calls = 0
question, img_path = create_question(sample, args.dataset)
difficulty = determine_difficulty(question, args.difficulty)
print(f"difficulty: {difficulty}")
if difficulty == 'basic':
final_decision = process_basic_query(question, examplers, args.model, args)
elif difficulty == 'intermediate':
final_decision = process_intermediate_query(question, examplers, args.model, args)
elif difficulty == 'advanced':
final_decision = process_advanced_query(question, args.model, args)
if args.dataset == 'medqa':
results.append({
'question': question,
'label': sample['answer_idx'],
'answer': sample['answer'],
'options': sample['options'],
'response': final_decision,
'difficulty': difficulty
})
# Save results
path = os.path.join(os.getcwd(), 'output')
if not os.path.exists(path):
os.makedirs(path)
with open(f'output/{args.model}_{args.dataset}_{args.difficulty}.json', 'w') as file:
json.dump(results, file, indent=4)