-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patharch_manager.py
90 lines (80 loc) · 2.6 KB
/
arch_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import random
import copy
def rand(c):
return random.randint(0, c - 1)
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ArchManager:
def __init__(self, cfg):
self.cfg = cfg
self.expansion = [6]
self.kernel_size = [7]
self.input_channel = 24
self.width_mult = [1.0, 0.75, 0.5, 0.25]
self.deconv_setting = cfg.MODEL.EXTRA.NUM_DECONV_FILTERS
self.is_search = False
self.search_arch = None
self.arch_setting = [
# c, n, s
[32, 4, 2],
[64, 6, 2],
[96, 8, 2],
[160, 8, 1]
]
def rand_kernel_size(self):
l = len(self.kernel_size)
return self.kernel_size[rand(l)]
def rand_expansion(self):
l = len(self.expansion)
return self.expansion[rand(l)]
def rand_channel(self, c):
l = len(self.width_mult)
new_c = c * self.width_mult[rand(l)]
return _make_divisible(new_c, 8)
def random_sample(self):
if self.is_search == True:
return self.search_arch
cfg_arch = {}
cfg_arch['img_size'] = 256 + 64 * rand(5)
cfg_arch['input_channel'] = self.rand_channel(self.input_channel)
cfg_arch['deconv_setting'] = []
for i in range(len(self.deconv_setting)):
cfg_arch['deconv_setting'].append(self.rand_channel(self.deconv_setting[i]))
cfg_arch['backbone_setting'] = []
for i in range(len(self.arch_setting)):
stage = {}
c, n, s = self.arch_setting[i]
stage['num_blocks'] = n
stage['stride'] = s
stage['channel'] = self.rand_channel(c)
stage['block_setting'] = []
for j in range(stage['num_blocks']):
stage['block_setting'].append([6, 7])
cfg_arch['backbone_setting'].append(stage)
return cfg_arch
def fixed_sample(self, reso=256, ratio=0.5):
cfg_arch = {}
cfg_arch['img_size'] = reso
cfg_arch['input_channel'] = _make_divisible(self.input_channel * ratio, 8)
cfg_arch['deconv_setting'] = []
for i in range(len(self.deconv_setting)):
cfg_arch['deconv_setting'].append(_make_divisible(self.deconv_setting[i] * ratio, 8))
cfg_arch['backbone_setting'] = []
for i in range(len(self.arch_setting)):
stage = {}
c, n, s = self.arch_setting[i]
stage['num_blocks'] = n
stage['stride'] = s
stage['channel'] = _make_divisible(c * ratio, 8)
stage['block_setting'] = []
for j in range(stage['num_blocks']):
stage['block_setting'].append([6, 7])
cfg_arch['backbone_setting'].append(stage)
return cfg_arch