-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathweight_transfer.py
193 lines (166 loc) · 7.92 KB
/
weight_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from torch import nn
from models.modules.mobile_modules import SeparableConv2d
from models.modules.resnet_architecture.mobile_resnet_generator import MobileResnetBlock
from models.modules.resnet_architecture.resnet_generator import ResnetBlock
from models.modules.resnet_architecture.super_mobile_resnet_generator import SuperMobileResnetBlock
from models.modules.spade_architecture.mobile_spade_generator import MobileSPADEGenerator, MobileSPADEResnetBlock, \
MobileSPADE
from models.modules.super_modules import SuperConv2d, SuperConvTranspose2d, SuperSeparableConv2d
def transfer_Conv2d(m1, m2, input_index=None, output_index=None):
assert isinstance(m1, nn.Conv2d) and isinstance(m2, (nn.Conv2d, SuperConv2d))
if m1.out_channels == 3: # If this is the last convolution
assert input_index is not None
m2.weight.data = m1.weight.data[:, input_index].clone()
if m2.bias is not None:
m2.bias.data = m1.bias.data.clone()
return None
else:
if m1.in_channels == 3: # If this is the first convolution
assert input_index is None
input_index = [0, 1, 2]
p = m1.weight.data
if input_index is None:
q = p.abs().sum([0, 2, 3])
_, idxs = q.topk(m2.in_channels, largest=True)
p = p[:, idxs]
else:
p = p[:, input_index]
if output_index is None:
q = p.abs().sum([1, 2, 3])
_, idxs = q.topk(m2.out_channels, largest=True)
else:
idxs = output_index
m2.weight.data = p[idxs].clone()
if m2.bias is not None:
m2.bias.data = m1.bias.data[idxs].clone()
return idxs
def transfer_ConvTranspose2d(m1, m2, input_index=None, output_index=None):
assert isinstance(m1, nn.ConvTranspose2d) and isinstance(m2, (nn.ConvTranspose2d, SuperConvTranspose2d))
assert output_index is None
p = m1.weight.data
if input_index is None:
q = p.abs().sum([1, 2, 3])
_, idxs = q.topk(m2.in_channels, largest=True)
p = p[idxs]
else:
p = p[input_index]
q = p.abs().sum([0, 2, 3])
_, idxs = q.topk(m2.out_channels, largest=True)
m2.weight.data = p[:, idxs].clone()
if m2.bias is not None:
m2.bias.data = m1.bias.data[idxs].clone()
return idxs
def transfer_SeparableConv2d(m1, m2, input_index=None, output_index=None):
assert isinstance(m1, SeparableConv2d) and isinstance(m2, (SeparableConv2d, SuperSeparableConv2d))
dw1, pw1 = m1.conv[0], m1.conv[2]
dw2, pw2 = m2.conv[0], m2.conv[2]
if input_index is None:
p = dw1.weight.data
q = p.abs().sum([1, 2, 3])
_, input_index = q.topk(dw2.out_channels, largest=True)
dw2.weight.data = dw1.weight.data[input_index].clone()
if dw2.bias is not None:
dw2.bias.data = dw1.bias.data[input_index].clone()
idxs = transfer(pw1, pw2, input_index, output_index)
return idxs
def transfer_MobileResnetBlock(m1, m2, input_index=None, output_index=None):
assert isinstance(m1, MobileResnetBlock) and isinstance(m2, (MobileResnetBlock, SuperMobileResnetBlock))
assert output_index is None
idxs = transfer(m1.conv_block[1], m2.conv_block[1], input_index=input_index)
idxs = transfer(m1.conv_block[6], m2.conv_block[6], input_index=idxs, output_index=input_index)
return idxs
def transfer_ResnetBlock(m1, m2, input_index=None, output_index=None):
assert isinstance(m1, ResnetBlock) and isinstance(m2, ResnetBlock)
assert output_index is None
idxs = transfer(m1.conv_block[1], m2.conv_block[1], input_index=input_index)
idxs = transfer(m1.conv_block[6], m2.conv_block[6], input_index=idxs, output_index=input_index)
return idxs
def transfer_MobileSPADE(m1, m2, input_index=None, output_index=None):
assert isinstance(m1, MobileSPADE)
assert isinstance(m2, MobileSPADE)
m2.param_free_norm.running_mean = m1.param_free_norm.running_mean[input_index].clone()
m2.param_free_norm.running_var = m1.param_free_norm.running_var[input_index].clone()
idxs = transfer(m1.mlp_shared[0], m2.mlp_shared[0], list(range(m1.mlp_shared[0].in_channels)))
transfer(m1.mlp_gamma, m2.mlp_gamma, idxs, input_index)
transfer(m1.mlp_beta, m2.mlp_beta, idxs, input_index)
return input_index
def transfer_MobileSPADEResnetBlock(m1, m2, input_index=None, output_index=None):
assert isinstance(m1, MobileSPADEResnetBlock)
assert isinstance(m2, MobileSPADEResnetBlock)
if m1.learned_shortcut:
assert m2.learned_shortcut
idxs = transfer(m1.norm_0, m2.norm_0, input_index)
idxs = transfer(m1.conv_0, m2.conv_0, idxs)
idxs = transfer(m1.norm_1, m2.norm_1, idxs)
output_index = transfer(m1.conv_1, m2.conv_1, idxs)
idxs = transfer(m1.norm_s, m2.norm_s, input_index)
transfer(m1.conv_s, m2.conv_s, idxs, output_index)
return output_index
else:
assert not m2.learned_shortcut
idxs = transfer(m1.norm_0, m2.norm_0, input_index)
idxs = transfer(m1.conv_0, m2.conv_0, idxs)
idxs = transfer(m1.norm_1, m2.norm_1, idxs)
transfer(m1.conv_1, m2.conv_1, idxs, input_index)
return input_index
def transfer(m1, m2, input_index=None, output_index=None):
if isinstance(m1, nn.Conv2d):
return transfer_Conv2d(m1, m2, input_index, output_index)
elif isinstance(m1, nn.ConvTranspose2d):
return transfer_ConvTranspose2d(m1, m2, input_index, output_index)
elif isinstance(m1, SeparableConv2d):
return transfer_SeparableConv2d(m1, m2, input_index, output_index)
elif isinstance(m1, ResnetBlock):
return transfer_ResnetBlock(m1, m2, input_index, output_index)
elif isinstance(m1, MobileResnetBlock):
return transfer_MobileResnetBlock(m1, m2, input_index, output_index)
elif isinstance(m1, MobileSPADEResnetBlock):
return transfer_MobileSPADEResnetBlock(m1, m2, input_index, output_index)
elif isinstance(m1, MobileSPADE):
return transfer_MobileSPADE(m1, m2, input_index, output_index)
else:
raise NotImplementedError('Unknown module [%s]!' % type(m1))
def load_pretrained_weight(model1, model2, netA, netB, ngf1, ngf2):
assert ngf1 >= ngf2
if isinstance(netA, nn.DataParallel):
net1 = netA.module
else:
net1 = netA
if isinstance(netB, nn.DataParallel):
net2 = netB.module
else:
net2 = netB
index = None
if model1 == 'mobile_resnet_9blocks':
assert len(net1.model) == len(net2.model)
for i in range(28):
m1, m2 = net1.model[i], net2.model[i]
# assert type(m1) == type(m2)
if isinstance(m1, (nn.Conv2d, nn.ConvTranspose2d, MobileResnetBlock)):
index = transfer(m1, m2, index)
elif model1 == 'resnet_9blocks':
assert len(net1.model) == len(net2.model)
for i in range(28):
m1, m2 = net1.model[i], net2.model[i]
assert type(m1) == type(m2)
if isinstance(m1, (nn.Conv2d, nn.ConvTranspose2d, ResnetBlock)):
index = transfer(m1, m2, index)
elif model1 == 'mobile_spade':
assert isinstance(net1, MobileSPADEGenerator)
assert isinstance(net2, MobileSPADEGenerator)
idxs = transfer(net1.fc, net2.fc, list(range(netA.fc.in_channels)))
idxs = transfer(net1.head_0, net2.head_0, idxs)
idxs = transfer(net1.G_middle_0, net2.G_middle_0, idxs)
idxs = transfer(net1.G_middle_1, net2.G_middle_1, idxs)
idxs = transfer(net1.up_0, net2.up_0, idxs)
idxs = transfer(net1.up_1, net2.up_1, idxs)
idxs = transfer(net1.up_2, net2.up_2, idxs)
idxs = transfer(net1.up_3, net2.up_3, idxs)
if hasattr(net1, 'up_4'):
assert hasattr(netB, 'up_4')
idxs = transfer(net1.up_4, net2.up_4, idxs)
else:
assert not hasattr(netB, 'up_4')
idxs = transfer(netA.conv_img, net2.conv_img, idxs)
else:
raise NotImplementedError('Unknown model [%s]!' % model1)