-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathprepare_cityscapes_dataset.py
109 lines (84 loc) · 4.92 KB
/
prepare_cityscapes_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import glob
import os
from PIL import Image
from tqdm import tqdm
help_msg = """
The dataset can be downloaded from https://cityscapes-dataset.com.
Please download the datasets [gtFine_trainvaltest.zip] and [leftImg8bit_trainvaltest.zip] and unzip them.
gtFine contains the semantics segmentations. Use --gtFine_dir to specify the path to the unzipped gtFine_trainvaltest directory.
leftImg8bit contains the dashcam photographs. Use --leftImg8bit_dir to specify the path to the unzipped leftImg8bit_trainvaltest directory.
The processed images will be placed at --output_dir.
Example usage:
python prepare_cityscapes_dataset.py --gitFine_dir ./gtFine/ --leftImg8bit_dir ./leftImg8bit --output_dir ./datasets/cityscapes/
"""
def load_resized_img(path):
return Image.open(path).convert('RGB').resize((256, 256))
def check_matching_pair(segmap_path, photo_path):
segmap_identifier = os.path.basename(segmap_path).replace('_gtFine_color', '')
photo_identifier = os.path.basename(photo_path).replace('_leftImg8bit', '')
assert segmap_identifier == photo_identifier, \
"[%s] and [%s] don't seem to be matching. Aborting." % (segmap_path, photo_path)
def process_cityscapes(gtFine_dir, leftImg8bit_dir, output_dir, phase, table_path=None):
save_phase = phase
savedir = os.path.join(output_dir, save_phase)
os.makedirs(savedir, exist_ok=True)
os.makedirs(savedir + 'A', exist_ok=True)
os.makedirs(savedir + 'B', exist_ok=True)
print("Directory structure prepared at %s" % output_dir)
segmap_expr = os.path.join(gtFine_dir, phase) + "/*/*_color.png"
segmap_paths = glob.glob(segmap_expr)
segmap_paths = sorted(segmap_paths)
photo_expr = os.path.join(leftImg8bit_dir, phase) + "/*/*_leftImg8bit.png"
photo_paths = glob.glob(photo_expr)
photo_paths = sorted(photo_paths)
assert len(segmap_paths) == len(photo_paths), \
"%d images that match [%s], and %d images that match [%s]. Aborting." % (
len(segmap_paths), segmap_expr, len(photo_paths), photo_expr)
if table_path is not None:
f = open(table_path, 'w')
else:
f = None
for i, (segmap_path, photo_path) in enumerate(tqdm(zip(segmap_paths, photo_paths))):
check_matching_pair(segmap_path, photo_path)
segmap = load_resized_img(segmap_path)
photo = load_resized_img(photo_path)
# data for pix2pix where the two images are placed side-by-side
sidebyside = Image.new('RGB', (512, 256))
sidebyside.paste(segmap, (256, 0))
sidebyside.paste(photo, (0, 0))
savepath = os.path.join(savedir, "%d.jpg" % i)
sidebyside.save(savepath, format='JPEG', subsampling=0, quality=100)
# data for cycle_gan where the two images are stored at two distinct directories
savepath = os.path.join(savedir + 'A', "%d_A.jpg" % i)
photo.save(savepath, format='JPEG', subsampling=0, quality=100)
savepath = os.path.join(savedir + 'B', "%d_B.jpg" % i)
segmap.save(savepath, format='JPEG', subsampling=0, quality=100)
if f is not None:
rel_segmap_path = os.path.relpath(segmap_path, os.path.dirname(os.path.abspath(gtFine_dir)))
rel_photo_path = os.path.relpath(photo_path, os.path.dirname(os.path.abspath(leftImg8bit_dir)))
f.write('%d %s %s\n' % (i, rel_segmap_path.replace('_color', '_trainIds'), rel_photo_path))
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--gtFine_dir', type=str, required=True,
help='Path to the Cityscapes gtFine directory.')
parser.add_argument('--leftImg8bit_dir', type=str, required=True,
help='Path to the Cityscapes leftImg8bit_trainvaltest directory.')
parser.add_argument('--output_dir', type=str, required=True,
default='database/cityscapes-origin',
help='Directory the output images will be written to.')
parser.add_argument('--train_table_path', type=str, default='datasets/train_table.txt',
help='Generate a mapping table to map the generated images to the original images. '
'The table will be used for mAP computation.')
parser.add_argument('--val_table_path', type=str, default='datasets/val_table.txt',
help='Generate a mapping table to map the generated images to the original images. '
'The table will be used for mAP computation.')
opt = parser.parse_args()
print(help_msg)
print('Preparing Cityscapes Dataset for val phase')
process_cityscapes(opt.gtFine_dir, opt.leftImg8bit_dir,
opt.output_dir, "val", table_path=opt.val_table_path)
print('Preparing Cityscapes Dataset for train phase')
process_cityscapes(opt.gtFine_dir, opt.leftImg8bit_dir,
opt.output_dir, "train", table_path=opt.train_table_path)
print('Done')