-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainer.py
32 lines (25 loc) · 941 Bytes
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from scipy import optimize
class Trainer:
def __init__(self, N):
self.N = N
def cost_function_wrapper(self, params, X, y):
self.N.set_params(params)
cost = self.N.cost_function(X, y)
grad = self.N.compute_gradient(X, y)
return cost, grad
def callback_f(self, params):
self.N.set_params(params)
self.J.append(self.N.cost_function(self.X, self.y))
def train(self, X, y):
self.X = X
self.y = y
self.J = []
params0 = self.N.get_params()
options = {'maxiter':200, 'disp':True}
res = optimize.minimize(self.cost_function_wrapper, params0, jac=True,
method='BFGS',
args=(X, y),
options=options,
callback=self.callback_f)
self.N.set_params(res.x)
self.optimization_results = res