-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
224 lines (174 loc) · 8.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import sys
import argparse
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__))))
import yaml
from tqdm import tqdm
from torch.utils.data import DataLoader, random_split
import pytorch_model_summary
import torchvision.transforms as transforms
from dataset.dataset import FaceDataset, FaceDatasetVal
from utils import *
from model_factory import model_build
from loss import *
def train(cfg, args):
'''Function for training face blur detection model'''
##########################################################
# configuration #
##########################################################
# (0) : global
exp_name = cfg['exp_name']
task_name = cfg['task_name']
num_classes = None
if 'num_classes' in cfg:
num_classes = cfg['num_classes']
device = args.device
# (1) : dataset
batch_size = cfg['dataset']['batch']
img_size = cfg['dataset']['image_size']
train_csv_path = cfg['dataset']['train_csv_path']
dataset_metric = cfg['dataset']['metric']
val_csv_path = cfg['dataset']['val_csv_path']
# (2) : training
model_name = cfg['train']['model']
##########################################################
# Dataloader #
##########################################################
transform=transforms.Compose([
transforms.ToTensor(),
transforms.RandomHorizontalFlip(0.5)
])
total_dataset = FaceDataset(
train_csv_path, dataset_metric, transform, img_size, 'rgb', task=task_name, num_classes=num_classes)
if len(val_csv_path) == 0 :
dataset_size = len(total_dataset)
train_size = int(dataset_size*0.8)
val_size = dataset_size - train_size
train_dataset, val_dataset = random_split(total_dataset, [train_size, val_size], generator=torch.Generator().manual_seed(0))
else :
train_dataset = total_dataset
val_dataset = FaceDatasetVal(
val_csv_path, dataset_metric, transform, img_size, 'rgb', task=task_name,num_classes=num_classes)
# Check number of each dataset size
print(f"Training dataset size : {len(train_dataset)}")
print(f"Validation dataset size : {len(val_dataset)}")
# Dataloaders
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
##########################################################
# Build Model #
##########################################################
if task_name == 'classification':
model = model_build(model_name=model_name, num_classes=num_classes)
else:
model = model_build(model_name=model_name, num_classes=1)
print("Model configuration : ")
print(pytorch_model_summary.summary(model,
torch.zeros(batch_size, 3, img_size, img_size),
show_input=True))
# only predict blur regression label -> num_classes = 1
##########################################################
# Training SetUp #
##########################################################
# (0) : Loss function
loss_func = build_loss_func(cfg['train']['loss'], device=device)
# (1) : Optimizer & Scheduler
optimizer = build_optim(cfg, model)
scheduler = build_scheduler(cfg, optimizer)
start = 0
epochs = cfg['train']['epochs']
# (2) : Device setting
if 'cuda' in device and torch.cuda.is_available():
model = model.to(device)
# (3) : Create directory to save checkpoints
os.makedirs(args.save, exist_ok=True)
os.makedirs(args.save + '/viz', exist_ok=True)
# (4) : Resume previous training
if '.ckpt' in args.resume or '.pt' in args.resume:
print("RESUME")
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer = optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler = scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
start = checkpoint['epoch']
##########################################################
# START TRAINING !! #
##########################################################
for epoch in range(start, epochs):
# (0) : Training
training_loss = 0.0
model.train()
for i, batch in tqdm(enumerate(train_dataloader)):
optimizer.zero_grad()
# Dataloader gives - regression:1 label // classification: 2 label
gt_reg, gt_cls = None, None
image = batch[0]
image = image.to(device)
if task_name == 'classification': # classification
gt_cls = batch[1][0]
gt_cls = gt_cls.to(device)
gt_reg = batch[1][1]
gt_reg = gt_reg.to(device)
elif task_name == 'regression':
gt_reg = batch[1]
gt_reg = gt_reg.to(device)
prediction = model(image)
loss = compute_loss(loss_func, prediction, gt_reg, gt_cls)
training_loss += loss.item()
loss.backward()
optimizer.step()
# break
print(f"Epoch #{epoch + 1} >>>> Training loss : {training_loss / len(train_dataloader):.6f}")
scheduler.step()
# (1): Evaluation
model.eval()
with torch.no_grad():
validation_loss = 0.0
for i, batch in tqdm(enumerate(val_dataloader)):
gt_reg, gt_cls = None, None
image = batch[0]
image = image.to(device)
if task_name == 'classification':
gt_cls = batch[1][0]
gt_cls = gt_cls.to(device)
gt_reg = batch[1][1]
gt_reg = gt_reg.to(device)
elif task_name == 'regression':
gt_reg = batch[1]
gt_reg = gt_reg.to(device)
prediction = model(image)
loss = compute_loss(loss_func, prediction, gt_reg, gt_cls)
validation_loss += loss.item()
# break
print(f"Epoch #{epoch + 1} >>>> Validation loss : {validation_loss / len(val_dataloader):.6f}")
# (2) : Visualization
if args.viz:
if task_name == 'regression':
cos_mean_fix, cos_mean_random = visualize(model, img_size, device, epoch, args.save + '/viz')
elif task_name == 'classification':
cos_mean_fix, cos_mean_random = visualize_cls(model, img_size, device, epoch, num_classes, args.save + '/viz')
cos_mean_fix = round(float(np.mean(cos_mean_fix)), 4)
cos_mean_random = round(float(np.mean(cos_mean_random)), 4)
print(f"Epoch #{epoch + 1} >>>> Test Metric - fix: {cos_mean_fix}")
print(f"Epoch #{epoch + 1} >>>> Test Metric - random: {cos_mean_random}")
# (3) : Checkpoint
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
"epoch": epoch
}
, f"{args.save}/checkpoint_{epoch}.ckpt")
print(f"Epoch #{epoch + 1} >>>> SAVE .ckpt file")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='base_regression', help='Path for configuration file')
parser.add_argument('--device', type=str, default='cpu', help='Device for model inference. It can be "cpu" or "cuda" ')
parser.add_argument('--save', type=str, default='checkpoint/base_regression', help='Path to save model file')
parser.add_argument('--resume', type=str, default='', help='Path to pretrained model file')
parser.add_argument('--viz', action='store_true')
args = parser.parse_args()
with open('config/' + args.config + '.yaml', 'r') as f:
cfg = yaml.safe_load(f)
train(cfg, args)