-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCOD_week10_1_MGK_BTE3207.Rmd
526 lines (368 loc) · 15.5 KB
/
COD_week10_1_MGK_BTE3207.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
---
title: "COD_week10_1_MGK_BTE3207"
author: "Minsik Kim"
date: "2024-11-04"
output:
rmdformats::downcute:
downcute_theme: "chaos"
code_folding: show
fig_width: 6
fig_height: 6
df_print: paged
editor_options:
chunk_output_type: inline
markdown:
wrap: 72
---
<!-- <style> -->
<!-- /* Default light mode styles */ -->
<!-- .reactable { -->
<!-- background-color: #ffffff !important; /* Light background */ -->
<!-- color: #000000 !important; /* Dark text */ -->
<!-- border-color: #cccccc !important; /* Light border */ -->
<!-- } -->
<!-- </style> -->
```{r warning=FALSE, message=FALSE, echo=FALSE, results='hide', setup}
#===============================================================================
#BTC.LineZero.Header.1.1.0
#===============================================================================
#R Markdown environment setup and reporting utility.
#===============================================================================
#RLB.Dependencies:
# knitr, magrittr, pacman, rio, rmarkdown, rmdformats, tibble, yaml
#===============================================================================
#Input for document parameters, libraries, file paths, and options.
#=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=
knitr::opts_chunk$set(message=FALSE, warning = FALSE)
path_working <-
ifelse(sessionInfo()[1]$R.version$platform == "x86_64-pc-linux-gnu",
"/mnt/4T_samsung/Dropbox/",
ifelse(sessionInfo()[1]$R.version$platform == "aarch64-apple-darwin20",
"/Volumes/macdrive/Dropbox/",
"/Users/minsikkim/Dropbox (Personal)/"))
path_library <-
ifelse(sessionInfo()[1]$R.version$platform == "x86_64-pc-linux-gnu",
"/home/bagel/R_lib/",
"/Library/Frameworks/R.framework/Resources/library/")
str_libraries <- c("tidyverse", "pacman", "yaml", "reactable", "scatterplot3d")
YAML_header <-
'---
title: "BTE3207 week 10-1"
author: "Minsik Kim"
date: "2024.11.04"
output:
rmdformats::downcute:
downcute_theme: "chaos"
code_folding: hide
fig_width: 6
fig_height: 6
---'
seed <- "20241104"
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
#Loads libraries, file paths, and other document options.
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
FUN.LineZero.Boot <- function() {
.libPaths(path_library)
require(pacman)
pacman::p_load(c("knitr", "rmarkdown", "rmdformats", "yaml"))
knitr::opts_knit$set(root.dir = path_working)
str_libraries |> unique() |> sort() -> str_libraries
pacman::p_load(char = str_libraries)
set.seed(seed)
}
FUN.LineZero.Boot()
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
#Outputs R environment report.
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
FUN.LineZero.Report <- function() {
cat("Line Zero Environment:\n\n")
paste("R:", pacman::p_version(), "\n") |> cat()
cat("Libraries:\n")
for (str_libraries in str_libraries) {
paste(
" ", str_libraries, ": ", pacman::p_version(package = str_libraries),
"\n", sep = ""
) |> cat()
}
paste("\nOperating System:", pacman::p_detectOS(), "\n") |> cat()
paste(" Library Path:", path_library, "\n") |> cat()
paste(" Working Path:", path_working, "\n") |> cat()
paste("Seed:", seed, "\n\n") |> cat()
cat("YAML Header:\n")
cat(YAML_header)
}
FUN.LineZero.Report()
```
# Before begin..
Let's load the SBP dataset.
```{r}
dataset_sbp <- read.csv(file = "Inha/5_Lectures/2024/Advanced biostatistics/scripts/BTE3207_Advanced_Biostatistics/dataset/sbp_dataset_korea_2013-2014.csv")
dataset_sbp_small <- subset(dataset_sbp, row.names(dataset_sbp) %in% sample(x = 1:1000000, size = 1000))
dataset_sbp
dataset_sbp_small
lm_result <- lm(data = dataset_sbp_small, formula = DBP ~ SBP)
lm_result$coefficients
lm_result$residuals
summary(lm_result)
lm(data = dataset_sbp_small, formula = FBS ~ BMI)
lm(data = dataset_sbp_small, formula = BMI ~ FBS) %>%
summary
cor(x = dataset_sbp_small$FBS, y = dataset_sbp_small$BMI)
```
Making a new variable `hypertension`
```{r}
dataset_sbp$hypertension <- ifelse(dataset_sbp$SBP > 130 |
dataset_sbp$DBP > 80,
T,
F)
```
# DBP ~ SBP
With a scatter plot, we can see there is a correlation between SBP and DBP.
```{r}
set.seed(1)
dataset_sbp_small <- subset(dataset_sbp, row.names(dataset_sbp) %in% sample(x = 1:1000000, size = 1000))
ggplot(data = dataset_sbp_small, aes(x = SBP, y = DBP)) +
geom_point() +
theme_classic( base_family = "serif", base_size = 20) +
xlab("SBP (mmHg)") +
ylab("DBP (mmHg)")
```
# Data with trendline
With `lm()` function, we can calculate the linear model of DBP~SBP with the least squares algorithm.
```{r}
#A function that returns equation
lm_eqn <- function(m){
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2,
list(a = format(unname(coef(m)[1]), digits = 2),
b = format(unname(coef(m)[2]), digits = 2),
r2 = format(summary(m)$r.squared, digits = 3)))
as.character(as.expression(eq));
}
set.seed(1)
dataset_sbp_small <- subset(dataset_sbp, row.names(dataset_sbp) %in% sample(x = 1:1000000, size = 1000))
ggplot(data = dataset_sbp_small, aes(x = SBP, y = DBP)) +
geom_point() +
theme_classic(base_family = "serif", base_size = 20) +
xlab("SBP (mmHg)") +
ylab("DBP (mmHg)") +
geom_smooth(method = "lm") +
geom_label(x = 130, y = 115,
label = lm_eqn(lm(data = dataset_sbp_small, DBP ~ SBP)),
parse = TRUE,
family='serif',
size = 8, label.size = 0, color = "blue")
#rnorm(100, mean = 100, sd = 1)
```
# Calculation of residual
The result of `Model's predicted value - sample ` is called residual. It can be shown as below.
```{r}
lm_result <-
lm(data = dataset_sbp_small,DBP ~ SBP) #%>% summary
d <- dataset_sbp_small
#Saving predicted values
d$predicted <- lm_result$fitted.values
d$residuals <- residuals(lm_result)
ggplot(d, aes(x = SBP, y = DBP)) +
geom_smooth(method = "lm", se = FALSE, color = "blue") + # Plot regression slope
geom_segment(aes(xend = SBP, yend = predicted), alpha = .2) + # alpha to fade lines
geom_point() +
xlab("SBP (mmHg)") +
ylab("DBP (mmHg)") +
theme_classic( base_family = "serif", base_size = 20) +
geom_label(x = 130, y = 115,
label = lm_eqn(lm(data = dataset_sbp_small,DBP ~ SBP)),
parse = TRUE,
family='serif',
size = 8, label.size = 0, color = "blue")
```
# Intercept, slope, and their units
Remember that the size of intercept and slope is *DEPENDENT* on the units of input or outcome.
```{r}
dataset_sbp_small$SBP_pa <- 133.322 * dataset_sbp_small$SBP
dataset_sbp_small$DBP_pa <- 133.322 * dataset_sbp_small$DBP
dataset_sbp_small$SBP_psi <- 0.0193368 * dataset_sbp_small$SBP
dataset_sbp_small$DBP_psi <- 0.0193368 * dataset_sbp_small$DBP
```
If we chnage the units of SBP or DBP,
DBP (pascal) ~ SBP (pascal)
```{r}
lm(data = dataset_sbp_small, DBP_pa ~ SBP_pa) %>% summary
```
DBP (mmHg) ~ SBP (pascal)
```{r}
lm(data = dataset_sbp_small, DBP ~ SBP_pa) %>% summary
```
DBP (psi) ~ SBP (psi)
```{r}
lm(data = dataset_sbp_small, DBP_psi ~ SBP_psi) %>% summary
```
# Distance from the mean value can be drawn as below.
This is the residual from mean of all value - which is X-bar - Xi. Using them we can calcualte SD of mean!
```{r}
#Saving predicted values
d$mean <- mean(dataset_sbp_small$DBP)
d$predicted <- lm_result$fitted.values
d$residuals <- residuals(lm_result)
ggplot(d, aes(x = SBP, y = DBP)) +
#geom_smooth(method = "lm", se = FALSE, color = "blue") + # Plot regression slope
geom_segment(aes(xend = SBP, yend = mean), alpha = 1, linetype = "dashed", color = "red") + # alpha to fade lines
geom_point() +
#xlab("SBP (mmHg)") +
ylab("DBP (mmHg)") +
theme_classic( base_family = "serif", base_size = 20) +
geom_hline(yintercept = mean(dataset_sbp_small$DBP), color = "blue") +
geom_label(x = 100, y = 95,
label = "Mean DBP",
#parse = TRUE,
family='serif',
size = 8, label.size = 0, color = "blue")
```
# Distance from a regression line can be drawn as below
With the same approach as above, we can calculate SD of a linear regression!
```{r}
lm_result <- dataset_sbp_small %>%
lm(data = .,DBP ~ SBP) #%>% summary
ggplot(d, aes(x = SBP, y = DBP)) +
geom_smooth(method = "lm", se = FALSE, color = "blue") + # Plot regression slope
geom_segment(aes(xend = SBP, yend = predicted), alpha = 1, linetype = "dashed", color = "red") + # alpha to fade
geom_point() +
xlab("SBP (mmHg)") +
ylab("DBP (mmHg)") +
theme_classic( base_family = "serif", base_size = 20) +
geom_label(x = 100, y = 90,
label = "Linear model",
#parse = TRUE,
family='serif',
size = 8, label.size = 0, color = "blue")
```
# Two draw both,
```{r}
ggplot(d, aes(x = SBP, y = DBP)) +
geom_smooth(method = "lm", se = FALSE, color = "blue") + # Plot regression slope
geom_segment(aes(xend = SBP, yend = predicted), alpha = 1, linetype = "dashed", color = "blue") + # alpha to fade
#geom_segment(aes(xend = SBP, yend = mean), alpha = 1, linetype = "dashed", color = "purple") + # alpha to fade
geom_point() +
xlab("SBP (mmHg)") +
ylab("DBP (mmHg)") +
theme_classic( base_family = "serif", base_size = 20) +
geom_label(x = 100, y = 90,
label = "Linear model",
#parse = TRUE,
family='serif',
size = 8, label.size = 0, color = "blue") +
geom_hline(yintercept = mean(dataset_sbp_small$DBP), color = "purple") +
geom_label(x = 170, y = 70,
label = "Mean DBP",
#parse = TRUE,
family='serif',
size = 8, label.size = 0, color = "purple")
```
# Example 2 - BMI vs. SBP
R-squared is the measuremnt how the regression line fits well with the data.
With lower signifiacnt associations, R-squared value will be smaller.
```{r}
lm(data = dataset_sbp_small, BMI ~ SBP) %>% summary
BMI_model <- lm(data = dataset_sbp_small, BMI ~ SBP)
d$predicted <- BMI_model$fitted.values
ggplot(d, aes(x = SBP, y = BMI)) +
geom_smooth(method = "lm", se = FALSE, color = "red") + # Plot regression slope
geom_segment(aes(xend = SBP, yend = predicted), alpha = 1, linetype = "dashed", color = "red") + # alpha to fade
#geom_segment(aes(xend = SBP, yend = mean), alpha = 1, linetype = "dashed", color = "purple") + # alpha to fade
geom_point() +
xlab("SBP (mmHg)") +
ylab("BMI (kg/m2)") +
theme_classic( base_family = "serif", base_size = 20) +
geom_label(x = 170, y = 36,
label = "Linear model",
#parse = TRUE,
family='serif',
size = 8, label.size = 0, color = "red") +
#geom_hline(yintercept = mean(dataset_sbp_small$DBP), color = "purple") +
geom_label(x = 155, y = 16,
label = lm_eqn(lm(data = dataset_sbp_small,BMI ~ SBP)),
parse = TRUE,
family='serif',
size = 8, label.size = 0, color = "red", fill = alpha(c("white"),1))
#ylim(c(11, 30))
```
# Example 3 - Binary variables
Linear model, confidence intervals of each term, p-values, and R-squared value can be calculated for binary input as well.
SBP vs Gender
```{r}
dataset_sbp_small$Female <- ifelse(dataset_sbp_small$SEX == 1, 0, 1)
lm(data = dataset_sbp_small, DBP ~ Female) %>% summary
gender_model <- lm(data = dataset_sbp_small, DBP ~ Female)
dataset_sbp_small$predicted <- gender_model$fitted.values
ggplot(dataset_sbp_small, aes(x = Female, y = DBP)) +
geom_smooth(method = "lm", se = FALSE, color = "red") + # Plot regression slope
geom_segment(aes(xend = Female, yend = predicted), alpha = 1, linetype = "dashed", color = "red") + # alpha to fade
#geom_segment(aes(xend = SBP, yend = mean), alpha = 1, linetype = "dashed", color = "purple") + # alpha to fade
geom_point() +
#xlab("") +
scale_x_discrete(name ="Gender (Male = 0, Female = 1)",
limits=c(0,1)) +
#scale_x_discrete(breaks = c(0,1))+
ylab("BMI (kg/m2)") +
theme_classic( base_family = "serif", base_size = 20) +
geom_label(x = 0.5, y = 36,
label = "Linear model",
#parse = TRUE,
family='serif',
size = 8, label.size = 0, color = "red") +
#geom_hline(yintercept = mean(dataset_sbp_small$DBP), color = "purple") +
geom_label(x = 0.5, y = 120,
label = lm_eqn(lm(data = dataset_sbp_small,DBP ~ Female)),
parse = TRUE,
family='serif',
size = 8, label.size = 0, color = "red", fill = alpha(c("white"),1))
#ylim(c(11, 30))
```
# Pearson's correlation
Pearson's correlation can be calculated using `stats::cor()` function.
```{r}
#THis is Pearson's correlation coefficient
cor(dataset_sbp_small$DBP, dataset_sbp_small$SBP)
lm(data = dataset_sbp_small, SBP ~ SEX) %>% confint
```
Where, Pearson's correlation is just the square root of R-squared!
```{r}
#It's sqrt() of R-squared.
sqrt(lm(data = dataset_sbp_small, DBP ~ SBP) %>% summary %>% .$r.squared)
```
`stats::cor()` function will calculated multiple correlations at the same time!
```{r}
cor(dataset_sbp)
```
Other types of correlation - Spearman's correlation (rank-based)
```{r}
cor(dataset_sbp,method = "spearman")
```
# Bibliography
```{r warning=FALSE, message=FALSE, echo=FALSE}
#===============================================================================
#BTC.LineZero.Footer.1.1.0
#===============================================================================
#R markdown citation generator.
#===============================================================================
#RLB.Dependencies:
# magrittr, pacman, stringr
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
#BTC.Dependencies:
# LineZero.Header
#===============================================================================
#Generates citations for each explicitly loaded library.
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
str_libraries <- c("r", str_libraries)
for (str_libraries in str_libraries) {
str_libraries |>
pacman::p_citation() |>
print(bibtex = FALSE) |>
capture.output() %>%
.[-1:-3] %>% .[. != ""] |>
stringr::str_squish() |>
stringr::str_replace("_", "") |>
cat()
cat("\n")
}
#===============================================================================
```