forked from apache/arrow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSparseTensor.fbs
135 lines (117 loc) · 4.17 KB
/
SparseTensor.fbs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
/// EXPERIMENTAL: Metadata for n-dimensional sparse arrays, aka "sparse tensors".
/// Arrow implementations in general are not required to implement this type
include "Tensor.fbs";
namespace org.apache.arrow.flatbuf;
/// ----------------------------------------------------------------------
/// EXPERIMENTAL: Data structures for sparse tensors
/// Coodinate (COO) format of sparse tensor index.
///
/// COO's index list are represented as a NxM matrix,
/// where N is the number of non-zero values,
/// and M is the number of dimensions of a sparse tensor.
///
/// indicesBuffer stores the location and size of the data of this indices
/// matrix. The value type and the stride of the indices matrix is
/// specified in indicesType and indicesStrides fields.
///
/// For example, let X be a 2x3x4x5 tensor, and it has the following
/// 6 non-zero values:
///
/// X[0, 1, 2, 0] := 1
/// X[1, 1, 2, 3] := 2
/// X[0, 2, 1, 0] := 3
/// X[0, 1, 3, 0] := 4
/// X[0, 1, 2, 1] := 5
/// X[1, 2, 0, 4] := 6
///
/// In COO format, the index matrix of X is the following 4x6 matrix:
///
/// [[0, 0, 0, 0, 1, 1],
/// [1, 1, 1, 2, 1, 2],
/// [2, 2, 3, 1, 2, 0],
/// [0, 1, 0, 0, 3, 4]]
///
/// Note that the indices are sorted in lexicographical order.
table SparseTensorIndexCOO {
/// The type of values in indicesBuffer
indicesType: Int;
/// Non-negative byte offsets to advance one value cell along each dimension
indicesStrides: [long];
/// The location and size of the indices matrix's data
indicesBuffer: Buffer;
}
/// Compressed Sparse Row format, that is matrix-specific.
table SparseMatrixIndexCSR {
/// The type of values in indptrBuffer
indptrType: Int;
/// indptrBuffer stores the location and size of indptr array that
/// represents the range of the rows.
/// The i-th row spans from indptr[i] to indptr[i+1] in the data.
/// The length of this array is 1 + (the number of rows), and the type
/// of index value is long.
///
/// For example, let X be the following 6x4 matrix:
///
/// X := [[0, 1, 2, 0],
/// [0, 0, 3, 0],
/// [0, 4, 0, 5],
/// [0, 0, 0, 0],
/// [6, 0, 7, 8],
/// [0, 9, 0, 0]].
///
/// The array of non-zero values in X is:
///
/// values(X) = [1, 2, 3, 4, 5, 6, 7, 8, 9].
///
/// And the indptr of X is:
///
/// indptr(X) = [0, 2, 3, 5, 5, 8, 10].
indptrBuffer: Buffer;
/// The type of values in indicesBuffer
indicesType: Int;
/// indicesBuffer stores the location and size of the array that
/// contains the column indices of the corresponding non-zero values.
/// The type of index value is long.
///
/// For example, the indices of the above X is:
///
/// indices(X) = [1, 2, 2, 1, 3, 0, 2, 3, 1].
///
/// Note that the indices are sorted in lexicographical order for each row.
indicesBuffer: Buffer;
}
union SparseTensorIndex {
SparseTensorIndexCOO,
SparseMatrixIndexCSR
}
table SparseTensor {
/// The type of data contained in a value cell.
/// Currently only fixed-width value types are supported,
/// no strings or nested types.
type: Type;
/// The dimensions of the tensor, optionally named.
shape: [TensorDim];
/// The number of non-zero values in a sparse tensor.
non_zero_length: long;
/// Sparse tensor index
sparseIndex: SparseTensorIndex;
/// The location and size of the tensor's data
data: Buffer;
}
root_type SparseTensor;