-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfully_convnets_5_channels.py
300 lines (258 loc) · 14.9 KB
/
fully_convnets_5_channels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from __future__ import print_function
import os
import datetime
import numpy as np
import tensorflow as tf
from six.moves import xrange
import Batch_manager_5channels as dataset
import data_reader_5channels as reader
import tensor_utils_5_channels as utils
from sys import argv
from os.path import join
from batch_eval_top import eval_dir
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer("batch_size", "33", "batch size for training")
tf.flags.DEFINE_string("logs_dir", "../logs-vgg19_5channels/", "path to logs directory")
tf.flags.DEFINE_string("data_dir", "../ISPRS_semantic_labeling_Vaihingen", "path to dataset")
tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer")
tf.flags.DEFINE_string("model_dir", "../pretrained_models/imagenet-vgg-verydeep-19.mat",
"Path to vgg model mat")
tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False")
tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize")
MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat'
# MAX_ITERATION = int(1e6 + 1)
MAX_ITERATION = int(121200 + 1) # 25 epochs with 16 top images
NUM_OF_CLASSES = 6
IMAGE_SIZE = 224
VALIDATE_IMAGES = ["top_mosaic_09cm_area7.png","top_mosaic_09cm_area17.png","top_mosaic_09cm_area23.png","top_mosaic_09cm_area37.png"]
def vgg_net(weights, image):
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
'relu5_3', 'conv5_4', 'relu5_4'
)
net = {}
current = image
for i, name in enumerate(layers):
kind = name[:4]
if kind == 'conv':
kernels, bias = weights[i][0][0][0][0]
# matconvnet: weights are [width, height, in_channels, out_channels]
# tensorflow: weights are [height, width, in_channels, out_channels]
if name == 'conv1_1':
np.random.seed(3796)
append_channels= np.random.normal(loc=0,scale=0.02,size=(3,3,2,64))
# print(append_channels)
kernels = np.concatenate((kernels, append_channels), axis=2)
kernels = utils.get_variable(kernels, name=name + "_w")
else:
kernels = utils.get_variable(kernels, name=name + "_w")
bias = utils.get_variable(bias.reshape(-1), name=name + "_b")
current = utils.conv2d_basic(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current, name=name)
if FLAGS.debug:
utils.add_activation_summary(current)
elif kind == 'pool':
current = utils.avg_pool_2x2(current)
net[name] = current
return net
def inference(image, keep_prob):
"""
Semantic segmentation network definition
:param image: input image. Should have values in range 0-255
:param keep_prob:
:return:
"""
print("setting up vgg pretrained conv layers ...")
model_data = utils.get_model_data(FLAGS.model_dir)
mean = model_data['normalization'][0][0][0]
mean_pixel = np.mean(mean, axis=(0, 1))
mean_pixel = np.append(mean_pixel, [30.69861307993539, 284.9702])
# mean_pixel = np.array([120.8952399852595, 81.93008162338278, 81.28988761879855, 30.69861307993539, 284.9702])
weights = np.squeeze(model_data['layers'])
processed_image = utils.process_image(image, mean_pixel)
with tf.variable_scope("inference"):
image_net = vgg_net(weights, processed_image)
conv_final_layer = image_net["conv5_3"]
pool5 = utils.max_pool_2x2(conv_final_layer)
W6 = utils.weight_variable([7, 7, 512, 4096], name="W6")
b6 = utils.bias_variable([4096], name="b6")
conv6 = utils.conv2d_basic(pool5, W6, b6)
relu6 = tf.nn.relu(conv6, name="relu6")
if FLAGS.debug:
utils.add_activation_summary(relu6)
relu_dropout6 = tf.nn.dropout(relu6, keep_prob=keep_prob)
W7 = utils.weight_variable([1, 1, 4096, 4096], name="W7")
b7 = utils.bias_variable([4096], name="b7")
conv7 = utils.conv2d_basic(relu_dropout6, W7, b7)
relu7 = tf.nn.relu(conv7, name="relu7")
if FLAGS.debug:
utils.add_activation_summary(relu7)
relu_dropout7 = tf.nn.dropout(relu7, keep_prob=keep_prob)
W8 = utils.weight_variable([1, 1, 4096, NUM_OF_CLASSES], name="W8")
b8 = utils.bias_variable([NUM_OF_CLASSES], name="b8")
conv8 = utils.conv2d_basic(relu_dropout7, W8, b8)
annotation_pred1 = tf.argmax(conv8, axis=3, name="prediction1")
# now to upscale to actual image size
deconv_shape1 = image_net["pool4"].get_shape()
W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSES], name="W_t1")
b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
conv_t1 = utils.conv2d_transpose_strided(conv8, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"]))
fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")
deconv_shape2 = image_net["pool3"].get_shape()
W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2")
conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"]))
fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")
shape = tf.shape(image)
deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], NUM_OF_CLASSES])
W_t3 = utils.weight_variable([16, 16, NUM_OF_CLASSES, deconv_shape2[3].value], name="W_t3")
b_t3 = utils.bias_variable([NUM_OF_CLASSES], name="b_t3")
conv_t3 = utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8)
annotation_pred = tf.argmax(conv_t3, axis=3, name="prediction")
return tf.expand_dims(annotation_pred, dim=3), conv_t3
def train(loss_val, var_list):
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
grads = optimizer.compute_gradients(loss_val, var_list=var_list)
if FLAGS.debug:
# print(len(var_list))
for grad, var in grads:
utils.add_gradient_summary(grad, var)
return optimizer.apply_gradients(grads)
def build_session(cuda_device):
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_device
keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 5], name="input_image")
annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")
pred_annotation, logits = inference(image, keep_probability)
annotation_64 = tf.cast(annotation, dtype=tf.int64)
# calculate accuracy for batch.
cal_acc = tf.equal(pred_annotation, annotation_64)
cal_acc = tf.cast(cal_acc, dtype=tf.int8)
acc = tf.count_nonzero(cal_acc) / (FLAGS.batch_size * IMAGE_SIZE * IMAGE_SIZE)
tf.summary.image("input_image", image, max_outputs=2)
tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2)
tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
labels=tf.squeeze(annotation,
squeeze_dims=[3]),
name="entropy")))
loss_summary = tf.summary.scalar("entropy", loss)
# summary accuracy in tensorboard
acc_summary = tf.summary.scalar("accuracy", acc)
trainable_var = tf.trainable_variables()
if FLAGS.debug:
for var in trainable_var:
utils.add_to_regularization_and_summary(var)
train_op = train(loss, trainable_var)
print("Setting up summary op...")
summary_op = tf.summary.merge_all()
sess = tf.Session()
print("Setting up Saver...")
saver = tf.train.Saver()
train_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/train', sess.graph)
validation_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/validation')
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print("Model restored...")
return image, logits, keep_probability, sess, annotation, train_op, loss, acc, loss_summary, acc_summary, saver, pred_annotation, train_writer, validation_writer
def main(argv=None):
image, logits, keep_probability, sess, annotation, train_op, loss, acc, loss_summary, acc_summary, saver, pred_annotation, train_writer, validation_writer = build_session(argv[1])
print("Setting up image reader...")
train_records, valid_records = reader.read_dataset(FLAGS.data_dir)
print(len(train_records))
print(len(valid_records))
print("Setting up dataset reader")
image_options = {'resize': False, 'resize_size': IMAGE_SIZE}
if FLAGS.mode == 'train':
train_dataset_reader = dataset.Batch_manager(train_records, image_options)
# Comment if Submission only
validation_dataset_reader = dataset.Batch_manager(valid_records, image_options)
""" os.environ["CUDA_VISIBLE_DEVICES"] = argv[1]
keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 5], name="input_image")
annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")
pred_annotation, logits = inference(image, keep_probability)
annotation_64 = tf.cast(annotation, dtype=tf.int64)
# calculate accuracy for batch.
cal_acc = tf.equal(pred_annotation, annotation_64)
cal_acc = tf.cast(cal_acc, dtype=tf.int8)
acc = tf.count_nonzero(cal_acc) / (FLAGS.batch_size * IMAGE_SIZE * IMAGE_SIZE)
tf.summary.image("input_image", image, max_outputs=2)
tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2)
tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
labels=tf.squeeze(annotation,
squeeze_dims=[3]),
name="entropy")))
loss_summary=tf.summary.scalar("entropy", loss)
# summary accuracy in tensorboard
acc_summary=tf.summary.scalar("accuracy", acc)
trainable_var = tf.trainable_variables()
if FLAGS.debug:
for var in trainable_var:
utils.add_to_regularization_and_summary(var)
train_op = train(loss, trainable_var)
print("Setting up summary op...")
summary_op = tf.summary.merge_all()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
print("Setting up Saver...")
saver = tf.train.Saver()
train_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/train', sess.graph)
validation_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/validation')
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print("Model restored...") """
if FLAGS.mode == "train":
for itr in xrange(MAX_ITERATION):
train_images, train_annotations = train_dataset_reader.next_batch(saver, FLAGS.batch_size, image, logits, keep_probability, sess, FLAGS.logs_dir)
feed_dict = {image: train_images, annotation: train_annotations, keep_probability: 0.75}
sess.run(train_op, feed_dict=feed_dict)
if itr % 50 == 0:
train_loss, train_acc, summary_loss, summary_acc = sess.run([loss, acc, loss_summary, acc_summary], feed_dict=feed_dict)
print("Step: %d, Train_loss: %g, Train_acc: %g" % (itr, train_loss, train_acc))
with open(join(FLAGS.logs_dir, 'iter_train_loss.csv'), 'a') as f:
f.write(str(itr) + ',' + str(train_loss) + '\n')
with open(join(FLAGS.logs_dir, 'iter_train_acc.csv'), 'a') as f:
f.write(str(itr) + ',' + str(train_acc) + '\n')
train_writer.add_summary(summary_loss, itr)
train_writer.add_summary(summary_acc, itr)
if itr % 600 == 0:
valid_images, valid_annotations = validation_dataset_reader.next_batch(saver, FLAGS.batch_size, image, logits, keep_probability, sess, FLAGS.logs_dir, True)
valid_loss, valid_acc, summary_loss, summary_acc = sess.run([loss, acc, loss_summary, acc_summary], feed_dict={image: valid_images, annotation: valid_annotations, keep_probability: 1.0})
validation_writer.add_summary(summary_loss, itr)
validation_writer.add_summary(summary_acc, itr)
print("%s ---> Validation_loss: %g , Validation Accuracy: %g" % (datetime.datetime.now(), valid_loss, valid_acc))
with open(join(FLAGS.logs_dir, 'iter_val_loss.csv'), 'a') as f:
f.write(str(itr) + ',' + str(valid_loss) + '\n')
with open(join(FLAGS.logs_dir, 'iter_val_acc.csv'), 'a') as f:
f.write(str(itr) + ',' + str(valid_acc) + '\n')
saver.save(sess, FLAGS.logs_dir + "model.ckpt", itr)
elif FLAGS.mode == "visualize":
valid_images, valid_annotations = validation_dataset_reader.get_random_batch(FLAGS.batch_size)
pred = sess.run(pred_annotation, feed_dict={image: valid_images, annotation: valid_annotations,
keep_probability: 1.0})
valid_annotations = np.squeeze(valid_annotations, axis=3)
pred = np.squeeze(pred, axis=3)
for itr in range(FLAGS.batch_size):
print(valid_images[itr].astype(np.uint8).shape)
utils.save_image(valid_images[itr, :, :, :3].astype(np.uint8), FLAGS.logs_dir, name="inp_" + str(itr))
print(valid_annotations[itr].astype(np.uint8).shape)
utils.save_image(valid_annotations[itr].astype(np.uint8), FLAGS.logs_dir, name="gt_" + str(itr))
print(pred[itr].astype(np.uint8).shape)
utils.save_image(pred[itr].astype(np.uint8), FLAGS.logs_dir, name="pred_" + str(itr))
print("Saved image: %d" % itr)
if __name__ == "__main__":
tf.app.run()