-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmake_model.py
89 lines (63 loc) · 2.67 KB
/
make_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import pickle
import sys
import os
from keras.preprocessing.sequence import pad_sequences
from keras.utils.np_utils import to_categorical
from keras.layers import Embedding
from keras.layers import Dense, Input
from keras.layers import TimeDistributed
from keras.layers import LSTM, Bidirectional
from keras.models import Model
MAX_SEQUENCE_LENGTH = 300
EMBEDDING_DIM = 300
VALIDATION_SPLIT = 0.2
with open('data.pkl', 'rb') as f:
X_train, Y_train, word2int, int2word, tag2int, int2tag = pickle.load(f)
n_tags = len(tag2int)
X_train = pad_sequences(X_train, maxlen=MAX_SEQUENCE_LENGTH)
Y_train = pad_sequences(Y_train, maxlen=MAX_SEQUENCE_LENGTH)
Y_train = to_categorical(Y_train, num_classes= len(tag2int) + 1)
print('TOTAL TAGS', len(tag2int))
print('TOTAL WORDS', len(word2int))
indices = np.arange(X_train.shape[0])
np.random.shuffle(indices)
X_train = X_train[indices]
Y_train = Y_train[indices]
nb_validation_samples = int(VALIDATION_SPLIT * X_train.shape[0])
x_train = X_train[:-nb_validation_samples]
y_train = Y_train[:-nb_validation_samples]
x_val = X_train[-nb_validation_samples*2:-nb_validation_samples]
y_val = Y_train[-nb_validation_samples*2:-nb_validation_samples]
x_test = X_train[-nb_validation_samples:]
y_test = Y_train[-nb_validation_samples:]
with open('PickledData/Glove.pkl', 'rb') as f:
embeddings_index = pickle.load(f)
print('Total %s word vectors.' % len(embeddings_index))
embedding_matrix = np.random.random((len(word2int) + 1, EMBEDDING_DIM))
for word, i in word2int.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
print('Embedding matrix shape', embedding_matrix.shape)
print('x_train shape', x_train.shape)
embedding_layer = Embedding(len(word2int) + 1,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,
trainable=True)
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
l_lstm = Bidirectional(LSTM(69, return_sequences=True))(embedded_sequences)
preds = TimeDistributed(Dense(n_tags + 1, activation='softmax'))(l_lstm)
model = Model(sequence_input, preds)
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['acc'])
print("model fitting - Bidirectional LSTM")
model.summary()
model.fit(x_train, y_train, validation_data=(x_val, y_val),
epochs=10, batch_size=50)
print('TEST ACCURACY: ', model.evaluate(x_test, y_test, verbose=0))
model.save('initial_model.h5')
print('MODEL SAVED')