-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathunify.m
438 lines (362 loc) · 15.9 KB
/
unify.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# constraint resolve
https://en.wikipedia.org/wiki/Unification_(computer_science)
https://en.wikipedia.org/wiki/Subtyping
of_type spot:Spot note:S s:Exps x:Type y:Type : Equals, Type =
of_type1_opt x y | of_type1_opt y x | Type.spot_exps_error spot,note,(x,(y,s))
of_types_opt r:Types s:Types : !(Equals, Exps) =
unify = List.map2 r s of_type_opt
List.all unify Opt.bit &
equals_seq, types = List.unzip unify
List.adds equals_seq, types
of_type_opt x:Type y:Type : !(Equals, Exp) =
of_type1_opt x y | of_type1_opt y x
of_type0 spot,note,exps:Spot,S,Exps x:Type y:Type : Equals, Exp =
of_type1_opt x y | of_type1_opt y x | Type.spot_exps_error (spot, note, x,(y,exps))
of_type2 error:Spot,S,Exps x:Type equals,y:Equals,Type : Equals, Type =
equals2, type = of_type0 error x y
of_equals error equals equals2, type
of_exp_type spot,note,exps:Spot,S,Exps a:Exp x:Type y:Type : Equals, Exp =
of_type1_opt x y | of_type1_opt y x | Type.spot_exps_error (spot, note, a,(x,(y,exps)))
of_type1_opt x:Type y:Type : !(Equals, Exp) = of_type1 x y
max : Term ? N = # todo - !N
B? 1
N0? 0ff
N1? 0ffff
N2? 0ffff_ffff
C_? C.max
I? 07fff_ffff_ffff_ffff
N? 0ffff_ffff_ffff_ffff
of_type1 x:Type y:Type : !(Equals, Type) =
spot = Exp.spot x
x.Exp.tree,y.Exp.tree .
# inlined Exp.eq (via Term.eq)
Z_, Z_? 0, x
B, B? 0, x
C_, C_? 0, x
N, N? 0, x
N, I? 0, x
I, N? 0, y
I, I? 0, x
R_, R_? 0, x
S_, S_? 0, x
Name x1, Name x2 & x1 == x2? 0, x
Tnat x1, Tnat x2 & x1 == x2? 0, x
Nat x1, Nat x2 & x1 == x2? 0, x
Nat n, Nat m & n > m? [(m, x)], y # else, type_apply will loop
_, Pre '!' (_, Pre '!' t) & Exp.eq x t? 0, y # todo - simplify with case t <: t!
Binary a '=' t, _?
of_type_opt t y .
equals, type? equals, (spot, Binary a '=' type)
_, Binary a '=' t?
of_type_opt x t .
equals, type? equals, (spot, Binary a '=' type)
Binary a ':' t, _?
of_type_opt t y .
equals, type? equals, (spot, Binary a ':' type)
_, Binary a ':' t?
of_type_opt x t .
equals, type? equals, (spot, Binary a ':' type)
# todo - Opt.nat coersion cast
_, Pre '!' t & Exp.eq x t? 0, y # t <: t!, before n <: t NAT_OCCUR below. else, Unify.of_type1 invalid occur 0 (! 0)
Nat n, _? # NAT_OCCUR
Type.occur n y & Exp.seq_error $Fun 'invalid occur' [x, y]
[(n, y)], y # i == y, polymorphic
Name 'Any', _? 0, y # type cast
Tnat m, Tnat n? 0, (spot, Tnat (N.max n m)) # else, unify #0 #1 N = unify (unify #0 #1) N = unify B N fails
Binary _ ':' t, _? of_type1 t y
_, Binary _ ':' t? of_type1 x t # why needed?
#B, N? 0, y # do not unify B and N - since B.eq needs B
C_, N? 0, y # good idea?
N0, N1? 0, y
N0, N2? 0, y
N1, N2? 0, y
N0, N? 0, y
N1, N? 0, y
N2, N? 0, y
Tnat 0, Z_? 0, y
Tnat n, u & (m = max u; m > 0 & n <= m)? 0, y
Tnat 0, Pre '*' _? 0, y # #0 <: *t
Tnat 0, Pre '+' _? 0, y # #0 <: +t
Tnat 0, Pre '!' _? 0, y # ZERO_OPT #0 ^ t! = t!
Tnat 0, Row [t, u]? # u ^ t* = v => #0 ^ t,u = v
type = spot, Pre '*' t
of_type_opt type u | 0, (spot, Pre '!' y) # #0 ^ t,u = !(t,u)
Pre o1 t1, Pre o2 t2 & o1 == o2? # !t %t *t t <: u => op t <: op u
of_type_opt t1 t2 .
equals, type? equals, (spot, Pre o1 type)
Post t1 o1, Post t2 o2 & o1 == o2?
of_type_opt t1 t2 .
equals, type? equals, (spot, Post type o1)
# todo - (_ x:Exp : B = (_,N? 1) x) -> (_,N? 1)
# todo - Tnat -> unify with N
Post _,N '^', Row s & List.all s (_ x:Exp : B = (_, Tnat _? 1) x)? 0, x
Binary t1 o1 u1, Binary t2 o2 u2? # t,t t-t t?t
o1 == o2 &
unify1 = of_type_opt t1 t2
unify2 = of_type_opt u1 u2
unify1 & unify2 &
equals1, type1 = unify1
equals2, type2 = unify2
of_equals (spot, $Fun + ' type1 - op', [x,y]) equals1 equals2, (spot, Binary type1 o1 type2)
Row [t, u], Pre '*' (_, Name 'Any')? # *Any with (#42,(S,(#42,#0)))
0, x
# PAIR_LIST 2,(3,(5,0)) == *N
Row [t, u], Pre '*' _? # t,u and y=*v
unify0 = of_type_opt u y # u = *v -> p
unify1 = unify0 & of_type_opt (spot, Pre '*' t) y # *t = *v -> q
unify0 & unify1 &
equals0, p = unify0
equals1, q = unify1
of_type_opt p q .
equals2, r?
of_equals_opt equals0 equals1 . # t, t* = t*
equals3, 1?
of_equals_opt equals3 equals2 .
equals4, 1? equals4, r
Pre '!' t1, Pre '*' t2? # t! <: t*
of_type_opt t1 t2 .
equals, type? equals, (spot, Pre '*' type) # u ^ v = t => u! ^ v* = t*
Pre '!' _, Tnat 0? 0, x # else, !t .unify #0 == !!t
Pre '!' t, _ & Exp.eq t y? 0, x # t! <: t
Pre '!' t1, _? # t <: t!
of_type_opt t1 y .
equals, type? equals, (spot, Pre '!' type) # u <: v --> u <: v!
Row r, Row s? of_types_opt r s .
equals, types? equals, (spot, Row_ types)
Tree r, Tree s? of_types_opt r s .
equals, types? equals, (spot, Tree types)
N, Name y0 & Kind.tag y0? 0, y # N <: Term or reg..
Name x0, _? # NAME_DEF
type = Hash.get !Kind.name_types x0
type & of_type_opt type y
# S, #0 -> !S
# Name and Nat need reflexive rules above
Tnat 0, _ & !((_, Name _? 1; _, Nat _? 1) y)? 0, (spot, Pre '!' y) # #0 <: t!
Fact (of_type1 (Kind.of '!"42"') (Kind.of '"42"') . (e, t? ! e.List.bit & Exp.eq t '!"42"'.Kind.of))
Fact (of_type1 (Kind.of '*"0"') (Kind.of '*1') . (e, t? e.List.bit & Exp.eq t '*"0"'.Kind.of))
Fact (of_type1 (Kind.of 'N') (Kind.of 'Term') . (_, t? Exp.eq t 'Term'.Kind.of))
#Fact (of_type1 (Kind.of 'Term') (Kind.of 'N') . (_, t? Exp.eq t 'Term'.Kind.of)) # not reflexive
# equality modulo name_types
term_eq x:Term y:Term : B = x,y .
# inlined Exp.eq (via Term.eq)
# todo - factor with Unify.of_type1
Z_, Z_? 1
B, B? 1
C_, C_? 1
N0, N0? 1
N1, N1? 1
N2, N2? 1
N, N? 1
S_, S_? 1
R_, R_? 1
Nat m, Nat n? n == m
Pre o1 t1, Pre o2 t2? o1 == o2 & eq t1 t2
Post t1 o1, Post t2 o2? o1 == o2 & eq t1 t2
Binary _ '=' _,t, _? term_eq t y
_, Binary _ '=' _,t? term_eq x t
Binary _ ':' _,t, _? term_eq t y
_, Binary _ ':' _,t? term_eq x t
Binary t1 o1 u1, Binary t2 o2 u2? o1 == o2 & eq t1 t2 & eq u1 u2
Tree s1, Tree s2? List.all2 s1 s2 eq
Row s1, Row s2? List.all2 s1 s2 eq
Name 'Any', _? 1
_, Name 'Any'? 1
Name w, Name z & S.eq w z? 1
Name z, _ & Hash.in !Kind.name_types z?
term_eq (Opt.get (Hash.get !Kind.name_types z) $Fun . Exp.tree) y
_, Name z & Hash.in !Kind.name_types z?
term_eq (Opt.get (Hash.get !Kind.name_types z) $Fun . Exp.tree) x
eq _,x:Exp _,y:Exp : B = term_eq x y
eq1 _,x:Exp y:Term : B = term_eq x y
# fixme - match with opt type
of_str x:S y:S : S =
unify = of_type_opt x.Kind.of y.Kind.of
| unify & Exp.str unify.1
| ''
str_eq x:S y:S z:S : B =
z1 = of_str x y
z2 = z.S.bit & z.Exp.type_of.Exp.str | ''
z1 == z2 | (Log.fill "$s\. unify:\. $s\. $s\. got: $s\. want: $s" [$Fun, x, y, z1, z2]; 0) # fixme - extra output
# reflexive All (x? str_eq x x == x)
# symmetric All (x? y? str_eq x y == str_eq y x)
# transitive All (x? y? z? p:(str_eq x y == str_eq y z)? q:(str_eq x y == str_eq y z)? str_eq x z)
Fact (str_eq 'Z' 'Z' 'Z')
Fact (str_eq 'Z' 'B' '')
Fact (str_eq 'Z' 'C' '')
Fact (str_eq 'Z' 'N' '')
Fact (str_eq 'Z' 'S' '')
Fact (str_eq 'Z' '!N' '')
Fact (str_eq 'Z' '%N' '')
Fact (str_eq 'Z' 'B,N' '')
Fact (str_eq 'Z' 'B?N' '')
Fact (str_eq 'Z' '0' 'Z')
Fact (str_eq '0' 'Z' 'Z')
Fact (str_eq '"0"' 'Z' 'Z')
Fact (str_eq 'Z' '"0"' 'Z')
Fact (str_eq '"1"' 'Z' '')
Fact (str_eq 'Z' '"1"' '')
Fact (str_eq 'B' 'B' 'B')
Fact (str_eq 'B' 'C' '')
Fact (str_eq 'B' 'N' '') # do not unify B and N since B.str_eq != N.str_eq
Fact (str_eq 'B' 'S' '')
Fact (str_eq 'B' '!N' '')
Fact (str_eq 'B' '%N' '')
Fact (str_eq 'B' 'B,N' '')
Fact (str_eq 'B' 'B?N' '')
Fact (str_eq '"0"' 'B' 'B')
Fact (str_eq 'B' '"0"' 'B')
Fact (str_eq '"1"' 'B' 'B')
Fact (str_eq 'B' '"1"' 'B')
Fact (str_eq '"2"' 'B' '')
Fact (str_eq 'B' '"2"' '')
Fact (str_eq 'C' 'B' '')
Fact (str_eq 'C' 'C' 'C')
Fact (str_eq 'C' 'N' 'N')
Fact (str_eq 'C' 'S' '')
Fact (str_eq 'C' '!N' '!N')
Fact (str_eq 'C' '%N' '')
Fact (str_eq 'C' 'B,N' '')
Fact (str_eq 'C' 'B?N' '')
Fact (str_eq '"0"' 'C' 'C')
Fact (str_eq 'C' '"0"' 'C')
Fact (str_eq 'C' '"1"' 'C')
Fact (str_eq 'C' '"2"' 'C')
Fact (str_eq 'N' 'N' 'N')
Fact (str_eq 'N' 'S' '')
Fact (str_eq 'N' '!N' '!N')
Fact (str_eq 'N' '%N' '')
Fact (str_eq 'N' 'B,N' '')
Fact (str_eq 'N' 'B?N' '')
Fact (str_eq '"0"' 'N' 'N')
Fact (str_eq 'N' '"0"' 'N')
Fact (str_eq 'N' '"1"' 'N')
Fact (str_eq 'N' '"2"' 'N')
Fact (str_eq 'S' 'S' 'S')
Fact (str_eq 'S' '!N' '')
Fact (str_eq 'S' '%N' '')
Fact (str_eq 'S' 'B,N' '')
Fact (str_eq 'S' 'B?N' '')
Fact (str_eq '"0"' 'S' '!S')
Fact (str_eq 'S' '"0"' '!S')
Fact (str_eq 'S' '"1"' '')
Fact (str_eq 'S' '!S' '!S')
Fact (str_eq '!S' 'S' '!S')
Fact (str_eq '*S' '*!S' '*!S')
Fact (str_eq '*!S' '*S' '*!S')
Fact (str_eq '0' '!!0' '! !0')
Fact (str_eq '!0' '0' '!0')
Fact (str_eq '0' '!0' '!0')
Fact (str_eq '1' '!1' '!1')
Fact (str_eq '*"0"' '*1' '*"0"')
Fact (str_eq '*!0' '*0' '*!0')
Fact (str_eq '*0' '*!0' '*!0')
Fact (str_eq '*!0' '*!0' '*!0')
Fact (str_eq '*!1' '*!1' '*!1')
Fact (str_eq 'N' '!N' '!N')
Fact (str_eq '!N' '!N' '!N')
Fact (str_eq '!N' '%N' '')
Fact (str_eq '!N' 'B,N' '')
Fact (str_eq '!N' 'B?N' '')
Fact (str_eq '!N' '0' '!N')
Fact (str_eq '%N' '%N' '%N')
Fact (str_eq '%N' 'B,N' '')
Fact (str_eq '%N' 'B?N' '')
Fact (str_eq '%N' '0' '%N')
Fact (str_eq 'N' '*N' '')
Fact (str_eq 'N, *N' '*N' '*N')
Fact (str_eq '!N' '*N' '*N')
Fact (str_eq 'S' '*S' '')
Fact (str_eq '*S' '*S' '*S')
Fact (str_eq 'S, *S' '*S' '*S')
Fact (str_eq '*S' 'B,N' '')
Fact (str_eq '*S' 'B?N' '')
Fact (str_eq '*S' '0' '*S')
Fact (str_eq '*N' 'N, *N' '*N')
Fact (str_eq '*N' 'N, (N, *N)' '*N')
Fact (str_eq '*N' 'N, (N, (N, *N))' '*N')
Fact (str_eq 'N, *N' '*N' '*N')
Fact (str_eq 'N, "0"' '*N' '*N')
Fact (str_eq 'S, *N' '*N' '')
Fact (str_eq '"0", (N, "0")' '*N' '*N') # #0 is N, hence N,(N,#0) -> *N
Fact (str_eq '"0", (S, "0")' '*S' '*!S')
Fact (str_eq '("0", "0")' '(S, "0")' '!S,"0"')
Fact (str_eq '("0", "0")' '*S' '*!S')
Fact (str_eq '*(N,N)' '*(N,N)' '*(N,N)')
Fact (str_eq '*(N,N)' '(N,N), *(N,N)' '*(N,N)')
Fact (str_eq '*(N,N)' '(N,N), ((N,N), *(N,N))' '*(N,N)')
# [0,2, 1,3, 2,5] : *0 # needs max in Tnat
Fact (str_eq '*N' '**N' '')
Fact (str_eq '*N' '*S' '')
Fact (str_eq 'B,N' 'B,N' 'B,N')
Fact (str_eq 'B,N' 'B?N' '')
Fact (str_eq 'B,N' '0' 'B,N')
Fact (str_eq 'B?N' 'B?N' 'B?N')
Fact (str_eq 'B?N' '0' 'B?N')
exp_type exp:S type:S : B = of_type_opt exp.Type.of_str type.Kind.of . Opt.bit
Fact (exp_type '0' '"0"')
Fact (exp_type '0' 'N')
Fact (exp_type '0' 'S') # !S
Fact (exp_type '[0, "a"]' '*S') # !*S
exp_type_cast exp:S type:S : B =
type2 = type.Kind.of
unify = of_type_opt exp.Type.of_str type2
unify & eq unify.1 type2
Fact !(exp_type_cast '0' 'S')
Fact !(exp_type_cast '[0, "a"]' '*S')
Fact (exp_type_cast '[0, "a"]' '*!S')
Fact (exp_type_cast '[0] + ["a"]' '*!S')
# Fact (str_eq 'terms' '*term' 'terms') # todo - init Kind
of_equal equal:Equal equals:Equals : Equals =
var, type0 = equal
type1 = Map.get N.eq equals var
| type1 &
of_type_opt type0 type1 .
equals1, type2?
equals2, unify2 = of_equals_opt equals1 equals
unify2 & var,type2, equals2
| equal, equals
of_equals1 error:Spot,S,Exps equal:Equal equals:Equals : Equals =
var, type0 = equal
type1 = Map.get N.eq equals var
| type1 &
unify = of_type0 error type0 type1
unify &
equals2, type2 = of_type0 error type0 type1
var,type2, of_equals error equals2 equals
| equal, equals
of_equals error:Spot,S,Exps x:Equals y:Equals : Equals =
List.sum_bad x (of_equals1 error) y
of_equals_list error:Spot,S,Exps s:*Equals : Equals =
List.sum_left s (of_equals error) 0
of_equals_opt x:Equals y:Equals : Equals, B = # equals! but fix [unify t*! t* in type.py]
z = List.sum_right x of_equal y
z, ((x.List.bit | List.bit y) == List.bit z) # right
partial x=y,z:S,S : B = List.any ['Row','init', 'Seq','tick', 'Seq','bit_and', 'Seq','bit_opt', 'Seq','not', 'Seq','pump', 'S','pump'] (Pair.eq_by S.eq S.eq x) | (y == 'Fun' & S.prefix z 'new') | y == 'Dl'
Fact (partial 'Seq','tick')
Fact !(partial 'Seq','foo')
# apply function type and get the return type
apply at:N spot:Spot exp:Exp fun:Exp args:Exps equals:Equals : fun_type:Type, arg_types:Types? Term, Equals, Type =
# t, vs & (spot.Spot.unit == 'Thread' & (K 23; Exp.log exp; Exp.log t; Exp.seq_log vs); 0)? Fail.main $Fun
(_, Binary (_, Binary x '=' (_, Binary a ':' t)) '?' u), 0? # default argument - x=a:t? u
# todo - check if a is of type u in Kind
apply at+1 spot exp fun args+[a] equals u,0
(_, Binary t '?' u), 0? # t? u
# todo - check how ocaml recognize partial functions
# todo - change return type of at Dl.main, Fun.new*, Any.cast
unit = Spot.unit spot
| ((_, Tree (_, Name f),_ & partial unit,f? 1) exp | (_, Tree (_, Name2 unit2,f),_ & partial unit2,f? 1) exp | (_, Tree (_, Name 'Dl'),_? 1) exp | ((_, Tree (_, Name2 unit2,_),_) & (unit2 == 'Any')? 1) exp) & # UNIFY_APPLY - Row.init
Tree fun,args, equals, (spot, Binary t '?' u)
| Tree ((spot, Name (S.fill 'Fun.new$n_$n' [List.size args, 1 + Fun.arity u])), (fun, args)), equals, (spot, Binary t '?' u) # see Fun.new1_1, Fun.new2_1, ...
t, 0? Tree fun,args, equals, t
(_, Binary t '?' u), v,vs? # t? u
# t = expected arg type from function type
# v = actual arg type from application expression
# exp = toplevel expression
equals1, _ = of_type0 spot,(S.fill '$s: type mismatch at argument $n: formal type, actual type, expression' [$Fun, at]),[exp] t v
equals2 = of_equals spot,(S.fill '$s: type mismatch at argument $n: last context, current context, expression' [$Fun, at]),[exp, (0, Nat at)] equals equals1
apply at+1 spot exp fun args equals2 u,vs
t, vs? Exp.seq_error $Fun 'invalid' exp,(t,vs)
? Fail $Fun # assert false
apply0 at:N spot:Spot exp:Exp fun:Exp args:Exps equals:Equals fun_type,arg_types:Type,Types : Equals, Exp, Type =
app, equals2, return = apply 0 spot exp fun args equals fun_type,arg_types
0, (spot, app), return