-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathner.py
98 lines (89 loc) · 4.89 KB
/
ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import codecs
# noinspection PyUnresolvedReferences
from os.path import isfile
from copy import deepcopy
import spacy
import random
from objects_and_functions import text_to_ann, ANNOT_SOURCE_DIR, transform_tags
random.seed(12345)
annotations = text_to_ann()
m_toponyms = codecs.open("data/m_toponyms.txt", encoding="utf-8")
m_toponyms = [t.strip() for t in m_toponyms]
n_toponyms = codecs.open("data/n_toponyms.txt", encoding="utf-8")
n_toponyms = [t.strip() for t in n_toponyms]
nlp = spacy.load('en_core_web_lg')
label_map = {u"Literal": u"Entity", u"Homonym": u"Entity", u"Coercion": u"Entity", u"Mixed": u"Entity",
u"Embedded_Literal": u"Entity", u"Demonym": u"Entity", u"Non_Literal_Modifier": u"Entity",
u"Metonymic": u"Entity", u"Literal_Modifier": u"Entity", u"Embedded_Non_Lit": u"Entity",
u"Language": u"Entity"}
# label_map = {u"Literal": u"Literal", u"Homonym": u"Associative", u"Coercion": u"Literal", u"Mixed": u"Literal",
# u"Embedded_Literal": u"Literal", u"Demonym": u"Associative", u"Non_Literal_Modifier": u"Associative",
# u"Metonymic": u"Associative", u"Literal_Modifier": u"Literal", u"Embedded_Non_Lit": u"Associative",
# u"Language": u"Associative"} # THIS LABEL MAP IS FOR BINARY SEQUENCE LABELLING (more difficult)
test_indices = sorted(annotations.keys())[80:120]
assert len(test_indices) == 40 and len(annotations.keys()) == 200
train = codecs.open("data/train.txt", mode="w", encoding="utf-8")
test = codecs.open("data/test.txt", mode="w", encoding="utf-8")
for file_name in annotations:
text = codecs.open(ANNOT_SOURCE_DIR + file_name + ".txt", encoding="utf-8")
metadata = text.next()
text = text.read()
offset = len(metadata)
annot = dict([(int(annotations[file_name][x].start), annotations[file_name][x]) for x in annotations[file_name]
if annotations[file_name][x].toponym_type != u"Non_Toponym"])
for sentence in nlp(text).sents:
sentence_one, np_heads = [], []
replacements, sentence_two = [], []
is_aug = False
label, ann, index = u"0", 0, 0
for word in sentence:
if word.text.strip() == "":
continue
if word.idx + offset in annot:
label = annot[word.idx + offset].toponym_type
if label not in [u"Non_Lit_Expression", u"Literal_Expression"]:
is_ann = True
ann = word.idx + offset
index = word.idx + offset
# ----------- Uncomment to remove Augmentation ------------
# elif file_name not in test_indices:
# is_aug = True
# np_heads.append(word)
# replacement = []
# top = nlp(m_toponyms[random.randint(0, len(m_toponyms) - 1)])
# for t in top:
# sentence_one.append((t.text + u" [Shape]" + t.shape_ + u" Entity\n", word.i - t.i))
# top = nlp(n_toponyms[random.randint(0, len(n_toponyms) - 1)])
# for t in top:
# replacement.append((t.text + u" [Shape]" + t.shape_ + u" Entity\n", word.i))
# replacements.append(replacement)
# -------------------- End of Augmentation ------------------
sentence_one.append((word.text + u" [Shape]" + word.shape_ + u" " + label_map.get(label, u"0") + "\n", word.i))
sentence_two.append((word.text + u" [Shape]" + word.shape_ + u" " + label_map.get(label, u"0") + "\n", word.i))
if label != u"0":
index += len(word) + 1
if ann != 0 and index - 1 >= int(annot[ann].end):
label = u"0"
sentence_one.append((u"\n", False, -1))
sentence_two.append((u"\n", False, -1))
for word in sentence_one:
if file_name in test_indices:
test.write(word[0])
else:
train.write(word[0])
# ------- Uncomment to remove augmentation -------------
# if is_aug and file_name not in test_indices:
# for head, replacement in zip(np_heads, replacements):
# left, right = head.left_edge.i, head.right_edge.i
# for i, word in enumerate(deepcopy(sentence_two)):
# if left <= word[1] <= right:
# sentence_two.remove(word)
# if word[1] == right:
# replacement.reverse()
# for r in replacement:
# sentence_two.insert(i - (right - left), r)
# for word in sentence_two:
# train.write(word[0])
# ---------------- End of Augmentation -----------------
transform_tags(file_name="data/train.txt", output="data/train_bmes.txt")
transform_tags(file_name="data/test.txt", output="data/test_bmes.txt")