forked from PaddlePaddle/PaddleMIX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_infer.py
64 lines (55 loc) · 2.16 KB
/
video_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# from paddlenlp.transformers import AutoTokenizer
from PIL import Image
from paddlemix.models.minicpm_v.modeling_minicpmv import MiniCPMV
from paddlemix.models.minicpm_v.tokenization_minicpmv_fast import MiniCPMVTokenizerFast
from decord import VideoReader, cpu # pip install decord
MODEL_NAME = "openbmb/MiniCPM-V-2_6"
model = MiniCPMV.from_pretrained(MODEL_NAME, dtype="bfloat16")
model = model.eval()
tokenizer = MiniCPMVTokenizerFast.from_pretrained(MODEL_NAME)
MAX_NUM_FRAMES=64 # if cuda OOM set a smaller number
def encode_video(video_path):
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1) # FPS
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if len(frame_idx) > MAX_NUM_FRAMES:
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
frames = vr.get_batch(frame_idx).asnumpy()
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
print('num frames:', len(frames))
return frames
video_path="paddlemix/demo_images/red-panda.mp4"
frames = encode_video(video_path)
question = "Describe the video"
msgs = [
{'role': 'user', 'content': frames + [question]},
]
# Set decode params for video
params = {}
params["use_image_id"] = False
params["max_slice_nums"] = 2 # use 1 if cuda OOM and video resolution > 448*448
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
max_new_tokens=2048, # 2048
**params
)
print(res)