-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathpruning.py
149 lines (127 loc) · 5.58 KB
/
pruning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from tqdm import tqdm
from net.models import LeNet
from net.quantization import apply_weight_sharing
import util
os.makedirs('saves', exist_ok=True)
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST pruning from deep compression paper')
parser.add_argument('--batch-size', type=int, default=50, metavar='N',
help='input batch size for training (default: 50)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=42, metavar='S',
help='random seed (default: 42)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--log', type=str, default='log.txt',
help='log file name')
parser.add_argument('--sensitivity', type=float, default=2,
help="sensitivity value that is multiplied to layer's std in order to get threshold value")
args = parser.parse_args()
# Control Seed
torch.manual_seed(args.seed)
# Select Device
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else 'cpu')
if use_cuda:
print("Using CUDA!")
torch.cuda.manual_seed(args.seed)
else:
print('Not using CUDA!!!')
# Loader
kwargs = {'num_workers': 5, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=False, **kwargs)
# Define which model to use
model = LeNet(mask=True).to(device)
print(model)
util.print_model_parameters(model)
# NOTE : `weight_decay` term denotes L2 regularization loss term
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=0.0001)
initial_optimizer_state_dict = optimizer.state_dict()
def train(epochs):
model.train()
for epoch in range(epochs):
pbar = tqdm(enumerate(train_loader), total=len(train_loader))
for batch_idx, (data, target) in pbar:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
# zero-out all the gradients corresponding to the pruned connections
for name, p in model.named_parameters():
if 'mask' in name:
continue
tensor = p.data.cpu().numpy()
grad_tensor = p.grad.data.cpu().numpy()
grad_tensor = np.where(tensor==0, 0, grad_tensor)
p.grad.data = torch.from_numpy(grad_tensor).to(device)
optimizer.step()
if batch_idx % args.log_interval == 0:
done = batch_idx * len(data)
percentage = 100. * batch_idx / len(train_loader)
pbar.set_description(f'Train Epoch: {epoch} [{done:5}/{len(train_loader.dataset)} ({percentage:3.0f}%)] Loss: {loss.item():.6f}')
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print(f'Test set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} ({accuracy:.2f}%)')
return accuracy
# Initial training
print("--- Initial training ---")
train(args.epochs)
accuracy = test()
util.log(args.log, f"initial_accuracy {accuracy}")
torch.save(model, f"saves/initial_model.ptmodel")
print("--- Before pruning ---")
util.print_nonzeros(model)
# Pruning
model.prune_by_std(args.sensitivity)
accuracy = test()
util.log(args.log, f"accuracy_after_pruning {accuracy}")
print("--- After pruning ---")
util.print_nonzeros(model)
# Retrain
print("--- Retraining ---")
optimizer.load_state_dict(initial_optimizer_state_dict) # Reset the optimizer
train(args.epochs)
torch.save(model, f"saves/model_after_retraining.ptmodel")
accuracy = test()
util.log(args.log, f"accuracy_after_retraining {accuracy}")
print("--- After Retraining ---")
util.print_nonzeros(model)