diff --git a/inst/pages/clustering.qmd b/inst/pages/clustering.qmd index b7b933b6..e60719ae 100644 --- a/inst/pages/clustering.qmd +++ b/inst/pages/clustering.qmd @@ -136,7 +136,7 @@ dend |> set("labels_cex", 0.8) |> plot() We can also visualize the clusters by projecting the data onto two-dimensional surface that captures the most variability in the data. In this example, we use -multi-dimensional scaling (MDS) (see [@sec-unsupervised-ordinantion]). +multi-dimensional scaling (MDS) (see [@sec-unsupervised-ordination]). ```{r hclust3} library(scater)