This repository has been archived by the owner on Oct 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExperiment.py
158 lines (137 loc) · 5.11 KB
/
Experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import pandas as pd
from scipy.io import arff
import os
import time
from joblib import Parallel, delayed
import pickle
from Run import *
datasets =\
(
'CBF',
'ItalyPowerDemand',
'ECG200',
'ECGFiveDays',
'Plane',
'ShapeletSim',
'SonyAIBORobotSurface1',
'SonyAIBORobotSurface2',
'Trace',
'TwoLeadECG'
)
lenSubsequences_dict =\
{
'CBF': {
'FOTS': [4, 5, 6, 7, 8],
'UED': [36, 37, 38, 39, 41, 43, 44],
'ED': [42, 43, 44, 45, 46]
},
'ItalyPowerDemand': {
'FOTS': [6, 8, 10],
'UED': [6, 8, 10],
'ED': [6, 8, 10]
},
'ECG200': {
'FOTS': [7, 8, 9, 10],
'UED': [31, 32, 33, 34],
'ED': [20, 22, 24, 29, 31, 33]
},
'ECGFiveDays': {
'FOTS': [10, 14, 18],
'UED': [30, 32, 34, 36, 38],
'ED': [30, 32, 34, 36, 38]
},
'Plane': {
'FOTS': [5, 6, 7, 8],
'UED': [4, 5, 6, 8, 10, 12, 13],
'ED': [17, 18, 19, 20]
},
'ShapeletSim': {
'FOTS': [13, 14, 15],
'UED': [11, 14, 15, 16],
'ED': [10, 12, 13, 14]
},
'SonyAIBORobotSurface1': {
'FOTS': [7, 8, 9, 10, 11],
'UED': [17, 19, 21, 29, 31, 33],
'ED': [21, 23, 25, 27, 29]
},
'SonyAIBORobotSurface2': {
'FOTS': [11, 15, 19],
'UED': [14, 15, 16, 18, 19, 20],
'ED': [9, 11, 13, 17, 19, 21]
},
'Trace': {
'FOTS': [7, 8, 9, 12, 13, 14],
'UED': [10, 11, 12, 14, 15, 16, 18, 19, 20],
'ED': [10, 11, 12, 18, 19, 20]
},
'TwoLeadECG': {
'FOTS': [13, 14, 15, 16, 17, 18],
'UED': [14, 17, 20],
'ED': [14, 17, 20]
}
}
def load_dataset(dataset, uncertainty_level):
dataset_path = os.path.join('uncertain_datasets', uncertainty_level, dataset)
data_test = pd.DataFrame(arff.loadarff(os.path.join(dataset_path, dataset + '_TEST.arff'))[0]).astype({'target': float})
data_noise_test = pd.DataFrame(arff.loadarff(os.path.join(dataset_path, dataset + '_NOISE_TEST.arff'))[0])
data_train = pd.DataFrame(arff.loadarff(os.path.join(dataset_path, dataset + '_TRAIN.arff'))[0]).astype({'target': float})
data_noise_train = pd.DataFrame(arff.loadarff(os.path.join(dataset_path, dataset + '_NOISE_TRAIN.arff'))[0])
df = pd.concat([data_test, data_train], ignore_index=True)
df_noise = pd.concat([data_noise_test, data_noise_train], ignore_index=True)
timeseries = df.drop('target', axis=1).to_numpy()
deltas = df_noise.to_numpy()
labels = df['target'].to_numpy(dtype=int)
print("timeseries:")
print(timeseries.shape)
print("deltas:")
print(deltas.shape)
print("labels:")
print(labels.shape)
return timeseries, deltas, labels
def run_on_dataset(dataset, uncertainty_level, similarity_measure):
print('run_on_dataset')
print('dataset:', dataset)
print('uncertainty_level:', uncertainty_level)
print('similarity_measure:', similarity_measure)
timeseries, deltas, labels = load_dataset(dataset, uncertainty_level)
results_file_txt = 'results_' + dataset + '_' + uncertainty_level + '_' + similarity_measure + '.txt'
results_file_dat = 'results_' + dataset + '_' + uncertainty_level + '_' + similarity_measure + '.dat'
if os.path.exists(results_file_txt):
os.remove(results_file_txt)
lenSubsequences = lenSubsequences_dict[dataset][similarity_measure]
# lenSubsequences = range(4, len(timeseries) // 2 + 1, 2)
results = {}
for lenSubsequence in lenSubsequences:
print('lenSubsequence:', lenSubsequence)
results[lenSubsequence] = {}
start = time.time()
RI, num_clusters, uShapelets, clusters = Run(timeseries, deltas, labels, lenSubsequence = lenSubsequence, similarity_measure = similarity_measure)
end = time.time()
results[lenSubsequence]['RI'] = RI
results[lenSubsequence]['num_clusters'] = num_clusters
results[lenSubsequence]['uShapelets'] = uShapelets
results[lenSubsequence]['clusters'] = clusters
results[lenSubsequence]['time'] = end - start
try:
with open(results_file_txt, 'a') as f:
f.write(f'lenSubsequence: {lenSubsequence}')
f.write(str(results[lenSubsequence]))
f.write('\n')
except Exception as e:
print(e)
print('dataset:', dataset)
print('uncertainty_level:', uncertainty_level)
print('similarity_measure:', similarity_measure)
print(results)
try:
with open(results_file_dat, 'wb') as f:
pickle.dump(results, f)
except Exception as e:
print(e)
if __name__ == '__main__':
Parallel(n_jobs = -1)(delayed(run_on_dataset)(dataset, uncertainty_level, similarity_measure) \
for dataset in datasets \
for uncertainty_level in ['0_1', '0_8', '2_0'] \
for similarity_measure in ['FOTS', 'ED', 'UED'] \
)