-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathA02-Mapping-data.Rmd
325 lines (225 loc) · 14.5 KB
/
A02-Mapping-data.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Mapping data in R{-}
```{r, child="_session-info.Rmd", echo = FALSE}
```
## Sample files for this exercise{-#app2_1}
Data used in the following exercises can be loaded into your current R session by running the following chunk of code.
```{r}
load(url("http://github.com/mgimond/Spatial/raw/master/Data/Sample1.RData"))
```
The data objects consist of five layers: an elevation raster (`elev.r`), an interstate polyline layer (`inter.sf`), a point cities layer (`p.sf`), a railroad polyline layer (`rail.sf`) and a Maine counties polygon layer (`s.sf`). All vector layers are `sf` objects.
R offers many different mapping environments. Most spatial object types have their own `plot` methods that can be called via `plot()`. This is fine when seeking a quick view of the data, but if you need more control of the look and feel of the map, you might want to turn to the `tmap` package.
The `tmap` functions will recognize `sf`, `raster` and `Spatial*` objects.
## The basics {-#app2_2}
To map the counties polygon layer using a uniform grey color scheme, type:
```{r fig.height=2.8, fig.width=3.5}
library(tmap)
tm_shape(s.sf) + tm_polygons(col="grey", border.col="white")
```
The `tm_shape` function loads the spatial object (it can be a vector or a raster). The `tm_polygons` function is one of many `tmap` functions that dictates how the spatial object is to be mapped. The `col` parameter defines either the polygon fill color or the spatial object's attribute column to be used to define the polygons' color scheme (thus generating a choropleth map). For example, to use the `Income` attribute value to define the color scheme, type:
```{r fig.height=2.8, fig.width=3.5}
tm_shape(s.sf) + tm_polygons(col="Income", border.col = "white")
```
You can customize the map by piecing together various map element functions. For example, to move the legend box outside of the main map body add a `tm_legend(outside = TRUE)` element to the mapping operation. Note the `+` symbol used to piece the functions together.
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) + tm_polygons("Income", border.col = "white") +
tm_legend(outside = TRUE)
```
You can also choose to omit the legend box (via the `legend.show = FALSE` parameter) and the data frame border (via the `tm_layout(frame = FALSE)` parameter:
```{r fig.height=2.8, fig.width=3.5}
tm_shape(s.sf) +
tm_polygons("Income", border.col = "white", legend.show=FALSE) +
tm_layout(frame = FALSE)
```
If you want to omit the polygon border lines from the plot, simply add ` border.col = NULL` to the list of`tm_polygons` parameters.
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("Income", border.col = NULL) +
tm_legend(outside = TRUE)
```
Note that the `tm_fill` function is nearly identical to the `tm_polygons` function with the difference being that the `tm_fill` function ignores polygon borders.
### Combining layers {-#app2_2_1}
You can easily stack layers by piecing together additional `tmp_shapes`. In the following example, the railroad layer and the point layer are added to the income map. The railroad layer is mapped using the `tm_lines` function and the cities point layer is mapped using the `tm_dots` function. Note that layers are pieced together using the `+` symbol.
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("Income", border.col = NULL) +
tm_legend(outside = TRUE) +
tm_shape(rail.sf) + tm_lines(col="grey70") +
tm_shape(p.sf) + tm_dots(size=.3, col="black")
```
Layers are stacked in the order in which they are listed. In the above example, the point layer is the last layer called therefore it is drawn on top of the previously called layers.
### Tweaking classification schemes {-#app2_2_2}
You can control the classification type, color scheme, and bin numbers via the `tm_polygons` function. For example, to apply a quantile scheme with 6 bins and varying shades of green type,
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("Income", style = "quantile", n = 6, palette = "Greens") +
tm_legend(outside = TRUE)
```
Other `style` classification schemes include `fixed`, `equal`, `jenks`, `kmeans` and `sd`. If you want to control the breaks manually set `style=fixed` and specify the classification breaks using the `breaks` parameter. For example,
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("Income", style = "fixed",palette = "Greens",
breaks = c(0, 23000, 27000, 100000 )) +
tm_legend(outside = TRUE)
```
If you want a bit more control over the legend elements, you can tweak the `labels` parameter as in,
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("Income", style = "fixed",palette = "Greens",
breaks = c(0, 23000, 27000, 100000 ),
labels = c("under $23,000", "$23,000 to $27,000", "above $27,000"),
text.size = 1) +
tm_legend(outside = TRUE)
```
### Tweaking colors {-#app2_2_3}
There are many color schemes to choose from, but you will probably want to stick to color swatches established by [Cynthia Brewer](http://colorbrewer2.org). These palettes are available in `tmap` and their names are listed below.
For **sequential** color schemes, you can choose from the following palettes.
```{r echo = FALSE, fig.height = 4.0, fig.width = 4}
OP <- par (mar=c(0,5,0,0))
RColorBrewer::display.brewer.all(5, type="seq")
par(OP)
```
For **divergent** color schemes, you can choose from the following palettes.
```{r echo = FALSE, fig.height =2.2, fig.width = 4}
OP <- par (mar=c(0,5,0,0))
RColorBrewer::display.brewer.all(5, type="div")
par(OP)
```
For **categorical** color schemes, you can choose from the following palettes.
```{r echo = FALSE, fig.height =2.2, fig.width = 4}
OP <- par (mar=c(0,5,0,0))
RColorBrewer::display.brewer.all(5, type="qual")
par(OP)
```
For example, to map the county names using the `Pastel1` categorical color scheme, type:
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NAME", palette = "Pastel1") +
tm_legend(outside = TRUE)
```
To map the percentage of the population not having attained a high school degree (column labeled `NoSchool` in `s.sf`) using a `YlOrBr` palette with 8 bins while modifying the legend title to read _"Fraction without a HS degree"_, type:
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NoSchool", style="quantile", palette = "YlOrBr", n=8,
title="Fraction without \na HS degree") +
tm_legend(outside = TRUE)
```
The character `\n` in the "`Fraction without \na HS degree`" string is interpreted by R as a _new line_ (carriage return).
If you want to reverse the color scheme simply add the minus symbol `-` in front of the palette name as in `palette = "-YlOrBr"`
### Adding labels {-#app2_2_4}
You can add text and labels using the `tm_text` function. In the following example, point labels are added to the right of the points with the text left justified (`just = "left"`) with an x offset of 0.5 units for added buffer between the point and the text.
```{r fig.height=3, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NAME", palette = "Pastel1", border.col = "white") +
tm_legend(outside = TRUE) +
tm_shape(p.sf) +
tm_dots(size= .3, col = "red") +
tm_text("Name", just = "left", xmod = 0.5, size = 0.8)
```
The `tm_text` function also accepts an auto placement option via the parameter `auto.placement = TRUE`. This uses a simulated annealing algorithm. Note that this automated approach may not generate the same text placement after each run.
### Adding a grid or graticule {-#app2_2_5}
You can add a grid or graticule to the map using the `tm_grid` function. You will need to modify the map's default viewport setting via the `tm_layout` function to provide space for the grid labels. In the following example, the grid is generated using the layer's UTM coordinate system and is divided into roughly four segments along the x-axis and five segments along the y-axis. The function will adjust the grid placement so as to generate "pretty" label values.
```{r fig.height=3, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NAME", palette = "Pastel1") +
tm_legend(outside = TRUE) +
tm_layout(outer.margins = c(.1,.1,.1,.1)) +
tm_grid(labels.inside.frame = FALSE,
n.x = 4, n.y = 5)
```
To generate a graticule (lines of latitude and longitude), simply modify the grid's coordinate system to a geographic one using a [PROJ4](https://proj4.org/apps/proj.html) formatted string. We can also modify the grid placement by explicitly specifying the lat/long grid values.
```{r fig.height=3, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NAME", palette = "Pastel1") +
tm_legend(outside = TRUE) +
tm_layout(outer.margins = c(.1,.1,.1,.1)) +
tm_grid(labels.inside.frame = FALSE,
x = c(-70.5, -69, -67.5),
y = c(44, 45, 46, 47),
projection = "+proj=longlat")
```
Adding the ° symbol to the lat/long values requires a bit more code:
```{r fig.height=3, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NAME", palette = "Pastel1") +
tm_legend(outside = TRUE) +
tm_layout(outer.margins = c(.1,.1,.1,.1)) +
tm_grid(labels.inside.frame = FALSE,
x = c(-70.5, -69, -67.5) ,
y = c(44, 45, 46, 47),
projection = "+proj=longlat",
labels.format = list(fun=function(x) {paste0(x,intToUtf8(176))} ) )
```
Here, we use the unicode *decimal* representation of the ° symbol (unicode *176*) and pass it to the `intToUtf8` function. A list of unicode characters and their decimal representation can be found on this [Wikipedia](https://en.wikipedia.org/wiki/List_of_Unicode_characters#Latin-1_Supplement) page.
## Adding statistical plots {-#app2_3}
A histogram of the variables being mapped can be added to the legend element. By default, the histogram will inherit the colors used in the classification scheme.
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NoSchool", palette = "YlOrBr", n = 6,
legend.hist = TRUE, title = "% no school") +
tm_legend(outside = TRUE, hist.width = 2)
```
## Mapping raster files {-#app2_4}
Raster objects can be mapped by specifying the `tm_raster` function. For example to plot the elevation raster and assign 64 continuous shades of the built-in terrain color ramp, type:
```{r fig.height=3, fig.width=5, results='hide'}
tm_shape(elev.r) +
tm_raster(style = "cont", title = "Elevation (m)",
palette = terrain.colors(64))+
tm_legend(outside = TRUE)
```
Note the use of another `style` parameter option: `cont` for *continuous* color scheme.
You can choose to symbolize the raster using classification breaks instead of continuous colors. For example, to manually set the breaks to 50, 100, 500, 750, 1000, and 15000 meters, type:
```{r fig.height=3, fig.width=5, results='hide'}
tm_shape(elev.r) +
tm_raster(style = "fixed", title = "Elevation (m)",
breaks = c(0, 50, 100, 500, 750, 1000, 15000),
palette = terrain.colors(5))+
tm_legend(outside = TRUE)
```
Other color gradients that R offers include, `heat.colors`, `rainbow`, and `topo.colors`. You can also create your own color ramp via the `colorRampPalette` function. For example, to generate a 12 bin quantile classification scheme using a color ramp that changes from `darkolivegreen4` to `yellow` to `brown` (these are built-in R colors), and adding a histogram to view the distribution of colors across pixels, type:
```{r fig.height=3, fig.width=5, results='hide'}
tm_shape(elev.r) +
tm_raster(style = "quantile", n = 12, title = "Elevation (m)",
palette = colorRampPalette( c("darkolivegreen4","yellow", "brown"))(12),
legend.hist = TRUE)+
tm_legend(outside = TRUE, hist.width = 2)
```
Note that the Brewer palette names can also be used with rasters.
## Changing coordinate systems {-#app2_5}
`tmap` can change the output's coordinate system without needing to reproject the data layers. In the following example, the elevation raster, railroad layer and point city layer are mapped onto a *USA Contiguous Albers Equal Area Conic* projection. A lat/long grid is added as a reference.
```{r fig.height=3, fig.width=5, results='hide'}
# Define the Albers coordinate system
aea <- "+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96 +ellps=GRS80 +datum=NAD83"
# Map the data
tm_shape(elev.r, projection = aea) +
tm_raster(style = "quantile", n = 12,
palette = colorRampPalette( c("darkolivegreen4","yellow", "brown"))(12),
legend.show = FALSE) +
tm_shape(rail.sf) + tm_lines(col = "grey70")+
tm_shape(p.sf) +tm_dots(size=0.5) +
tm_layout(outer.margins = c(.1,.1,.1,.1)) +
tm_grid(labels.inside.frame = FALSE,
x = c(-70.5, -69, -67.5),
y = c(44, 45, 46, 47),
projection = "+proj=longlat")
```
The first data layer's `projection=` parameter will define the map's coordinate system. Note that this parameter does not need to be specified in the other layers taking part in the output map.
If a projection is not explicitly defined in the first call to `tm_shape`, then the output map will default to the first layer's reference system.
## Side-by-side maps {-#app2_6}
You can piece maps together side-by-side using the `tmap_arrange` function. You first need to save each map to a separate object before combining them. For example:
```{r fig.height=3, fig.width=13}
inc.map <- tm_shape(s.sf) + tm_polygons(col="Income")+
tm_legend(outside=TRUE)
school.map <- tm_shape(s.sf) + tm_polygons(col="NoSchool")+
tm_legend(outside=TRUE)
name.map <- tm_shape(s.sf) + tm_polygons(col="NAME")+
tm_legend(outside=TRUE)
tmap_arrange(inc.map, school.map, name.map)
```
## Splitting data by polygons or group of polygons {-#app2_7}
You can split the output into groups of features based on a column attribute. For example, to split the income map into individual polygons via the `NAME` attribute, type:
```{r fig.height=3, fig.width=13}
tm_shape(s.sf) + tm_polygons(col = "Income") +
tm_legend(outside = TRUE) +
tm_facets( by = "NAME", nrow = 2)
```
The order of the faceted plot follows the alphanumeric order of the faceting attribute values. If you want to change the faceted order, you will need to change the attribute's [level order](https://mgimond.github.io/ES218/Week02a.html#rearranging_level_order).