-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathukf.cc
executable file
·318 lines (238 loc) · 7.49 KB
/
ukf.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#include "ukf.h"
using Eigen::MatrixXd;
using Eigen::VectorXd;
using namespace utility;
Ukf::Ukf() {
// Process noise standard deviation longitudinal acceleration in m/s^2
std_a = 0.5;
// Process noise standard deviation yaw acceleration in rad/s^2
std_yawdd = 0.8;
is_initialized = false;
previous_timestamp = 0;
n_x = 5;
n_aug = 7;
lambda = 3 - n_aug;
total_sig_points = 2 * n_aug + 1;
double weight_remaining = 0.5/(lambda+n_aug);
weights = VectorXd::Zero(total_sig_points);
weights = weights.array() + weight_remaining;
weights(0) = lambda/(lambda+n_aug);
// initialize x, P
x = VectorXd(n_x);
P = MatrixXd::Identity(n_x, n_x);
// augmented x, P
x_aug = VectorXd::Zero(n_aug);
P_aug = MatrixXd::Zero(n_aug, n_aug);
x_aug.head(n_x) = x;
P_aug.topLeftCorner(n_x,n_x) = P;
P_aug(5,5) = std_a*std_a;
P_aug(6,6) = std_yawdd*std_yawdd;
//create sigma point matrices
Xsig_aug = MatrixXd(n_aug, total_sig_points);
Xsig_pred = MatrixXd(n_x, total_sig_points);
n_z_radar = 3;
n_z_lidar = 2;
// Laser measurement noise standard deviation position1 in m
std_laspx = 0.15;
// Laser measurement noise standard deviation position2 in m
std_laspy = 0.15;
R_lidar = MatrixXd(n_z_lidar,n_z_lidar);
R_lidar << std_laspx*std_laspx, 0,
0, std_laspy*std_laspy;
H_lidar = MatrixXd(n_z_lidar,n_x);
H_lidar << 1,0,0,0,0,
0,1,0,0,0;
// Radar measurement noise standard deviation radius in m
std_radr = 0.3;
// Radar measurement noise standard deviation angle in rad
std_radphi = 0.03;
// Radar measurement noise standard deviation radius change in m/s
std_radrd = 0.3;
R_radar = MatrixXd(n_z_radar,n_z_radar);
R_radar << std_radr*std_radr, 0, 0,
0, std_radphi*std_radphi, 0,
0, 0,std_radrd*std_radrd;
nis = 0;
}
void Ukf::ProcessMeasurement(const SensorReading& reading) {
if(!is_initialized) {
InitializeState(reading);
}
double dt = (reading.timestamp - previous_timestamp) / 1.0e6;
previous_timestamp = reading.timestamp;
//if the measurement comes back to back almost instantly,
// then we don't really need to predict again.
if ( dt > 1e-3 ) {
Ukf::Prediction(dt);
}
switch (reading.sensor_type) {
case SensorType::LASER:
UpdateLidar(reading);
break;
case SensorType::RADAR:
UpdateRadar(reading);
break;
}
}
void Ukf::InitializeState(const SensorReading& reading) {
if(reading.sensor_type == SensorType::RADAR) {
double ro = reading.measurement[0];
double theta = reading.measurement[1];
double ro_dot= reading.measurement[2];
x << ro * cos(theta), ro * sin(theta), ro_dot, 0, 0;
} else if (reading.sensor_type == SensorType::LASER) {
x << reading.measurement[0], reading.measurement[1], 0, 0, 0;
}
//we can't let x and y be zero.
if ( fabs(x(0)+x(1)) < 1e-4){
x(0) = 1e-4;
x(1) = 1e-4;
}
previous_timestamp = reading.timestamp;
is_initialized = true;
}
void Ukf::Prediction(double dt) {
GenerateSigmaPoints();
PredictSigmaPoints(dt);
PredictMeanCovariance();
}
void Ukf::GenerateSigmaPoints() {
P_aug.topLeftCorner(n_x,n_x) = P;
MatrixXd A = P_aug.llt().matrixL();
x_aug.head(n_x) = x;
Xsig_aug.col(0) = x_aug;
for (int i = 0; i< n_aug; i++) {
Xsig_aug.col(i+1) = x_aug + sqrt(lambda+n_aug) * A.col(i);
Xsig_aug.col(i+1+n_aug) = x_aug - sqrt(lambda+n_aug) * A.col(i);
}
}
void Ukf::PredictSigmaPoints(double dt) {
for (int i = 0; i< total_sig_points; i++) {
//extract values for better readability
double p_x = Xsig_aug(0,i);
double p_y = Xsig_aug(1,i);
double v = Xsig_aug(2,i);
double yaw = Xsig_aug(3,i);
double yawd = Xsig_aug(4,i);
double nu_a = Xsig_aug(5,i);
double nu_yawdd = Xsig_aug(6,i);
//predicted state values
double px_p, py_p;
//avoid division by zero
if (fabs(yawd) > 0.001) {
px_p = p_x + v/yawd * ( sin (yaw + yawd*dt) - sin(yaw));
py_p = p_y + v/yawd * ( cos(yaw) - cos(yaw+yawd*dt) );
}
else {
px_p = p_x + v*dt*cos(yaw);
py_p = p_y + v*dt*sin(yaw);
}
double v_p = v;
double yaw_p = yaw + yawd*dt;
double yawd_p = yawd;
//add noise
double dt2 = dt*dt;
px_p = px_p + 0.5*nu_a*dt2 * cos(yaw);
py_p = py_p + 0.5*nu_a*dt2 * sin(yaw);
v_p = v_p + nu_a*dt;
yaw_p = yaw_p + 0.5*nu_yawdd*dt2;
yawd_p = yawd_p + nu_yawdd*dt;
//write predicted sigma point into right column
Xsig_pred(0,i) = px_p;
Xsig_pred(1,i) = py_p;
Xsig_pred(2,i) = v_p;
Xsig_pred(3,i) = yaw_p;
Xsig_pred(4,i) = yawd_p;
}
}
void Ukf::PredictMeanCovariance() {
x = Xsig_pred * weights;
P.fill(0.0);
for (int i = 0; i < total_sig_points; i++) {
// state difference
VectorXd x_diff = Xsig_pred.col(i) - x;
//angle normalization
x_diff(3) = atan2(sin(x_diff(3)), cos(x_diff(3)));
P += weights(i) * x_diff * x_diff.transpose();
}
}
void Ukf::UpdateLidar(const SensorReading& reading) {
//transform sigma points into measurement space
MatrixXd Zsig = MatrixXd(n_z_lidar, total_sig_points);
Zsig = H_lidar*Xsig_pred;
CompleteUpdate(Zsig, reading);
}
void Ukf::UpdateRadar(const SensorReading& reading) {
//transform sigma points into measurement space
MatrixXd Zsig = MatrixXd(n_z_radar, total_sig_points);
for (int i = 0; i < total_sig_points; i++) {
double p_x = Xsig_pred(0,i);
double p_y = Xsig_pred(1,i);
double v = Xsig_pred(2,i);
double yaw = Xsig_pred(3,i);
double v1 = cos(yaw)*v;
double v2 = sin(yaw)*v;
// measurement model
Zsig(0,i) = sqrt(p_x*p_x + p_y*p_y); //r
Zsig(1,i) = atan2(p_y,p_x); //phi
if(Zsig(0,i) < 1e-4) { //r_dot check for div by 0
Zsig(2,i) = (p_x*v1 + p_y*v2) / 1e-4;
} else {
Zsig(2,i) = (p_x*v1 + p_y*v2) / Zsig(0,i);
}
}
CompleteUpdate(Zsig, reading);
}
void Ukf::CompleteUpdate(const MatrixXd& Zsig, const SensorReading& reading) {
int n_z;
MatrixXd R;
switch (reading.sensor_type) {
case SensorType::LASER:
n_z = n_z_lidar;
R = R_lidar;
break;
case SensorType::RADAR:
n_z = n_z_radar;
R = R_radar;
break;
}
//mean predicted measurement
VectorXd z_pred = Zsig * weights;
//measurement covariance matrix S
MatrixXd S = MatrixXd::Zero(n_z,n_z);
for (int i = 0; i < total_sig_points; i++) { //2n+1 simga points
//residual
VectorXd z_diff = Zsig.col(i) - z_pred;
//angle normalization
z_diff(1) = atan2(sin(z_diff(1)), cos(z_diff(1)));
S += weights(i) * z_diff * z_diff.transpose();
}
//add measurement noise covariance matrix
S += R;
//create matrix for cross correlation Tc
MatrixXd Tc = MatrixXd::Zero(n_x, n_z);
//calculate cross correlation matrix
for (int i = 0; i < total_sig_points; i++) {
//residual
VectorXd z_diff = Zsig.col(i) - z_pred;
//angle normalization
z_diff(1) = atan2(sin(z_diff(1)), cos(z_diff(1)));
// state difference
VectorXd x_diff = Xsig_pred.col(i) - x;
//angle normalization
x_diff(3) = atan2(sin(x_diff(3)), cos(x_diff(3)));
Tc += weights(i) * x_diff * z_diff.transpose();
}
//Kalman gain K;
MatrixXd Si = S.inverse();
MatrixXd K = Tc * Si;
//error
VectorXd z_error = reading.measurement - z_pred;
//angle normalization
z_error(1) = atan2(sin(z_error(1)), cos(z_error(1)));
//correct x and P
x = x + K * z_error;
P = P - K*S*K.transpose();
//calculate NIS
nis = z_error.transpose() * Si * z_error;
}