forked from googleprojectzero/Jackalope
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmutator.cpp
594 lines (506 loc) · 20 KB
/
mutator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*
Copyright 2020 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "stdlib.h"
#include "string.h"
#include "common.h"
#include "mutator.h"
#include "ctype.h"
#include <algorithm>
#include <iostream>
#include <fstream>
Mutex RepeatMutator::stats_mutex;
uint64_t RepeatMutator::stats[REPEAT_STATS];
uint64_t RepeatMutator::nstats = 0;
uint64_t RepeatMutator::next_stat = 0;
uint64_t RepeatMutator::median_num_repeats = 2;
float RepeatMutator::adapted_repeat_p = 0.75;
int Mutator::GetRandBlock(size_t samplesize, size_t minblocksize, size_t maxblocksize, size_t *blockstart, size_t *blocksize, PRNG *prng) {
if (samplesize == 0) return 0;
if (samplesize < minblocksize) return 0;
if (samplesize < maxblocksize) maxblocksize = samplesize;
*blocksize = prng->Rand((int)minblocksize, (int)maxblocksize);
*blockstart = prng->Rand(0, (int)(samplesize - (*blocksize)));
return 1;
}
bool ByteFlipMutator::Mutate(Sample *inout_sample, PRNG *prng, std::vector<Sample *> &all_samples) {
// printf("In ByteFlipMutator::Mutate\n");
if (inout_sample->size == 0) return true;
int charpos = prng->Rand(0, (int)(inout_sample->size - 1));
char c = (char)prng->Rand(0, 255);
inout_sample->bytes[charpos] = c;
return true;
}
bool ArithmeticMutator::Mutate(Sample *inout_sample,
PRNG *prng,
std::vector<Sample *> &all_samples)
{
int flip_endian = prng->Rand(0, 1);
int size = prng->Rand(0, 2);
switch(size) {
case 0:
return MutateArithmeticValue<uint16_t>(inout_sample, prng, flip_endian);
case 1:
return MutateArithmeticValue<uint32_t>(inout_sample, prng, flip_endian);
case 2:
return MutateArithmeticValue<uint64_t>(inout_sample, prng, flip_endian);
}
return true;
}
template<typename T>
bool ArithmeticMutator::MutateArithmeticValue(Sample *inout_sample,
PRNG *prng,
int flip_endian)
{
T value;
size_t blockstart, blocksize;
if (!GetRandBlock(inout_sample->size,
sizeof(T), sizeof(T),
&blockstart, &blocksize,
prng))
return true;
value = *(T *)(inout_sample->bytes + blockstart);
if(flip_endian) value = FlipEndian(value);
int change = prng->Rand(-256, 256);
value += change;
if(flip_endian) value = FlipEndian(value);
*(T *)(inout_sample->bytes + blockstart) = value;
return true;
}
bool BlockFlipMutator::Mutate(Sample *inout_sample, PRNG *prng, std::vector<Sample *> &all_samples) {
// printf("In BlockFlipMutator::Mutate\n");
size_t blocksize, blockpos;
if (!GetRandBlock(inout_sample->size, min_block_size, max_block_size, &blockpos, &blocksize, prng)) return true;
if (uniform) {
char c = (char)prng->Rand(0, 255);
for (size_t i = 0; i<blocksize; i++) {
inout_sample->bytes[blockpos + i] = c;
}
} else {
for (size_t i = 0; i<blocksize; i++) {
inout_sample->bytes[blockpos + i] = (char)prng->Rand(0, 255);
}
}
return true;
}
bool AppendMutator::Mutate(Sample *inout_sample, PRNG *prng, std::vector<Sample *> &all_samples) {
// printf("In AppendMutator::Mutate\n");
size_t old_size = inout_sample->size;
if (old_size >= Sample::max_size) return true;
size_t append = prng->Rand(min_append, max_append);
if ((old_size + append) > Sample::max_size) {
append = Sample::max_size - old_size;
}
if (append <= 0) return true;
size_t new_size = old_size + append;
inout_sample->bytes =
(char *)realloc(inout_sample->bytes, new_size);
inout_sample->size = new_size;
for (size_t i = old_size; i < new_size; i++) {
inout_sample->bytes[i] = (char)prng->Rand(0, 255);
}
return true;
}
bool BlockInsertMutator::Mutate(Sample *inout_sample, PRNG *prng, std::vector<Sample *> &all_samples) {
// printf("In BlockInsertMutator::Mutate\n");
size_t old_size = inout_sample->size;
if (old_size >= Sample::max_size) return true;
size_t to_insert = prng->Rand(min_insert, max_insert);
if ((old_size + to_insert) > Sample::max_size) {
to_insert = Sample::max_size - old_size;
}
size_t where = prng->Rand(0, (int)old_size);
size_t new_size = old_size + to_insert;
if (to_insert <= 0) return true;
char *old_bytes = inout_sample->bytes;
char *new_bytes = (char *)malloc(new_size);
memcpy(new_bytes, old_bytes, where);
for (size_t i = 0; i < to_insert; i++) {
new_bytes[where + i] = (char)prng->Rand(0, 255);
}
memcpy(new_bytes + where + to_insert, old_bytes + where, old_size - where);
if (old_bytes) free(old_bytes);
inout_sample->bytes = new_bytes;
inout_sample->size = new_size;
return true;
}
bool BlockDuplicateMutator::Mutate(Sample *inout_sample, PRNG *prng, std::vector<Sample *> &all_samples) {
// printf("In BlockDuplicateMutator::Mutate\n");
if (inout_sample->size >= Sample::max_size) return true;
size_t blockpos, blocksize;
if (!GetRandBlock(inout_sample->size, min_block_size, max_block_size, &blockpos, &blocksize, prng)) return true;
int64_t blockcount = prng->Rand(min_duplicate_cnt, max_duplicate_cnt);
if ((inout_sample->size + blockcount * blocksize) > Sample::max_size)
blockcount = (Sample::max_size - (int64_t)inout_sample->size) / blocksize;
if (blockcount <= 0) return true;
char *newbytes;
newbytes = (char *)malloc(inout_sample->size + blockcount * blocksize);
memcpy(newbytes, inout_sample->bytes, blockpos + blocksize);
for (int64_t i = 0; i<blockcount; i++) {
memcpy(newbytes + blockpos + (i + 1)*blocksize, inout_sample->bytes + blockpos, blocksize);
}
memcpy(newbytes + blockpos + (blockcount + 1)*blocksize,
inout_sample->bytes + blockpos + blocksize,
inout_sample->size - blockpos - blocksize);
if (inout_sample->bytes) free(inout_sample->bytes);
inout_sample->bytes = newbytes;
inout_sample->size = inout_sample->size + blockcount * blocksize;
return true;
}
void Mutator::AddInterestingValue(char *data, size_t size, std::vector<Sample>& interesting_values) {
Sample interesting_sample;
interesting_sample.Init(data, size);
interesting_values.push_back(interesting_sample);
}
bool InterestingValueMutator::Mutate(Sample *inout_sample, PRNG *prng, std::vector<Sample *> &all_samples) {
// printf("In InterestingValueMutator::Mutate\n");
if (interesting_values.empty()) return true;
Sample *interesting_sample = &interesting_values[prng->Rand(0, (int)interesting_values.size() - 1)];
size_t blockstart, blocksize;
if (!GetRandBlock(inout_sample->size, interesting_sample->size, interesting_sample->size, &blockstart, &blocksize, prng)) return true;
memcpy(inout_sample->bytes + blockstart, interesting_sample->bytes, interesting_sample->size);
return true;
}
InterestingValueMutator::InterestingValueMutator(bool use_default_values) {
if (use_default_values) {
AddDefaultInterestingValues<uint16_t>(interesting_values);
AddDefaultInterestingValues<uint32_t>(interesting_values);
// AddDefaultInterestingValues<uint64_t>(interesting_values);
}
}
template<typename T> void Mutator::AddDefaultInterestingValues(std::vector<Sample>& interesting_values) {
uint32_t M[] = {2, 3, 4, 6, 8, 10, 12, 16, 24, 32, 40, 48,
56, 64, 72, 80, 88, 96, 104, 112, 120, 128,
136, 144, 152, 160, 168, 176, 184, 192, 200,
208, 216, 224, 232, 240, 248, 256 };
int32_t N[] = {1, 2, 3, 4, 6, 8, 10, 12, 16, 32, 64, 128, 256};
T value;
value = 0;
AddInterestingValue((char *)(&value), sizeof(value), interesting_values);
value = 1;
for (uint32_t i = 0; i < (sizeof(value) * 8); i++) {
AddInterestingValue((char *)(&value), sizeof(value), interesting_values);
value = (value << 1);
}
for (uint32_t i = 0; i < (sizeof(M)/sizeof(M[0])); i++) {
int32_t m = M[i];
value = (T)(-1) / m + 1;
AddInterestingValue((char *)(&value), sizeof(value), interesting_values);
value = FlipEndian(value);
AddInterestingValue((char *)(&value), sizeof(value), interesting_values);
}
for (uint32_t j = 0; j < (sizeof(N)/sizeof(N[0])); j++) {
int32_t n = N[j];
value = (T)(0) - n;
AddInterestingValue((char *)(&value), sizeof(value), interesting_values);
value = FlipEndian(value);
AddInterestingValue((char *)(&value), sizeof(value), interesting_values);
}
}
void InterestingValueMutator::DictUnescape(std::string &in, std::string &out) {
const char* in_buf = in.data();
char* out_buf = (char*)malloc(in.size());
size_t in_pos = 0, out_pos = 0;
size_t in_size = in.size();
char convert_buf[3];
convert_buf[2] = 0;
if (in_size < 4) {
out = in;
return;
}
while (in_pos < (in_size - 3)) {
if((in_buf[in_pos] == '\\') && (in_buf[in_pos + 1] == 'x') &&
isxdigit(in_buf[in_pos + 2]) && isxdigit(in_buf[in_pos + 3]))
{
convert_buf[0] = in_buf[in_pos + 2];
convert_buf[1] = in_buf[in_pos + 3];
out_buf[out_pos] = (char)strtol(convert_buf, NULL, 16);
in_pos += 4;
out_pos++;
} else {
out_buf[out_pos] = in_buf[in_pos];
out_pos++;
in_pos++;
}
}
while (in_pos < in_size) {
out_buf[out_pos] = in_buf[in_pos];
out_pos++;
in_pos++;
}
out.assign(out_buf, out_pos);
free(out_buf);
}
void InterestingValueMutator::AddDictionary(char* path) {
std::fstream f;
f.open(path, std::ios::in);
if (!f.is_open()) {
FATAL("Error reading %s", path);
}
size_t values_added = 0;
std::string line;
std::string escapepattern = "\\x";
while (getline(f, line)) {
if (line.empty()) continue;
if (line.find(escapepattern) == std::string::npos) {
AddValue(line.data(), line.size());
} else {
std::string unescaped;
DictUnescape(line, unescaped);
AddValue(unescaped.data(), unescaped.size());
}
values_added++;
}
f.close();
printf("Added %zu values from dictionary\n", values_added);
}
bool SpliceMutator::Mutate(Sample *inout_sample, PRNG *prng, std::vector<Sample *> &all_samples) {
if(all_samples.empty()) return true;
bool displace = false;
if(prng->RandReal() < displacement_p) {
displace = true;
}
Sample *other_sample = all_samples[prng->Rand(0, (int)all_samples.size() - 1)];
if(inout_sample->size == 0) return false;
if(other_sample->size == 0) return false;
if(points == 1) {
size_t point1, point2;
char *new_bytes;
size_t new_sample_size;
if(displace) {
point1 = prng->Rand(0, (int)(inout_sample->size - 1));
point2 = prng->Rand(0, (int)(other_sample->size - 1));
} else {
size_t minsize = inout_sample->size;
if(other_sample->size < minsize) minsize = other_sample->size;
point1 = prng->Rand(0, (int)(minsize - 1));
point2 = point1;
}
new_sample_size = point1 + (other_sample->size - point2);
if(new_sample_size == inout_sample->size) {
memcpy(inout_sample->bytes + point1, other_sample->bytes + point2, other_sample->size - point2);
return true;
} else {
new_bytes = (char *)malloc(new_sample_size);
memcpy(new_bytes, inout_sample->bytes, point1);
memcpy(new_bytes + point1, other_sample->bytes + point2, other_sample->size - point2);
free(inout_sample->bytes);
inout_sample->bytes = new_bytes;
inout_sample->size = new_sample_size;
if (inout_sample->size > Sample::max_size) inout_sample->Trim(Sample::max_size);
return true;
}
} else if(points != 2) {
FATAL("Splice mutator can only work with 1 or 2 splice points");
}
if(displace) {
size_t blockstart1, blocksize1;
size_t blockstart2, blocksize2;
size_t blockstart3, blocksize3;
if(!GetRandBlock(inout_sample->size, 1, inout_sample->size, &blockstart1, &blocksize1, prng)) return true;
if(!GetRandBlock(other_sample->size, 1, other_sample->size, &blockstart2, &blocksize2, prng)) return true;
blockstart3 = blockstart1 + blocksize1;
blocksize3 = inout_sample->size - blockstart3;
size_t new_sample_size = blockstart1 + blocksize2 + blocksize3;
char *new_bytes = (char *)malloc(new_sample_size);
memcpy(new_bytes, inout_sample->bytes, blockstart1);
memcpy(new_bytes + blockstart1, other_sample->bytes + blockstart2, blocksize2);
memcpy(new_bytes + blockstart1 + blocksize2, inout_sample->bytes + blockstart3, blocksize3);
if(new_sample_size > Sample::max_size) {
new_sample_size = Sample::max_size;
new_bytes = (char *)realloc(new_bytes, Sample::max_size);
}
free(inout_sample->bytes);
inout_sample->bytes = new_bytes;
inout_sample->size = new_sample_size;
return true;
} else {
size_t blockstart, blocksize;
if(!GetRandBlock(other_sample->size, 2, other_sample->size, &blockstart, &blocksize, prng)) return true;
if(blockstart > inout_sample->size) {
blocksize += (blockstart - inout_sample->size);
blockstart = inout_sample->size;
}
if((blockstart + blocksize) <= inout_sample->size) {
memcpy(inout_sample->bytes + blockstart, other_sample->bytes + blockstart, blocksize);
return true;
}
size_t new_sample_size = blockstart + blocksize;
char *new_bytes = (char *)malloc(new_sample_size);
memcpy(new_bytes, inout_sample->bytes, blockstart);
memcpy(new_bytes + blockstart, other_sample->bytes + blockstart, blocksize);
free(inout_sample->bytes);
inout_sample->bytes = new_bytes;
inout_sample->size = new_sample_size;
return true;
}
}
void BaseDeterministicContext::AddHotOffset(size_t offset) {
mutex.Lock();
// in any case, restart scan
cur_region = 0;
MutateRegion new_region;
new_region.cur_progress = 0;
size_t newregion_start = offset;
if(newregion_start < DETERMINISTIC_MUTATE_BYTES_PREVIOUS) newregion_start = 0;
else newregion_start -= DETERMINISTIC_MUTATE_BYTES_PREVIOUS;
size_t newregion_end = offset + DETERMINISTIC_MUTATE_BYTES_NEXT;
for(auto iter = regions.begin(); iter != regions.end(); iter++) {
if(newregion_start < iter->start) {
new_region.start = newregion_start;
new_region.cur = new_region.start;
if(iter->start > newregion_end) {
new_region.end = newregion_end;
} else {
new_region.end = iter->start;
}
regions.insert(iter, new_region);
mutex.Unlock();
return;
}
if(newregion_start <= iter->end) {
if(newregion_end <= iter->end) {
mutex.Unlock();
return;
}
// extend an existing region
iter->end = newregion_end;
mutex.Unlock();
return;
}
}
new_region.start = newregion_start;
new_region.cur = new_region.start;
new_region.end = newregion_end;
regions.push_back(new_region);
mutex.Unlock();
return;
}
bool BaseDeterministicContext::GetNextByteToMutate(size_t *pos, size_t *progress, size_t max_progress) {
MutateRegion *region = NULL;
while(cur_region < regions.size()) {
region = &(regions[cur_region]);
if(region->cur_progress >= max_progress) {
region->cur_progress = 0;
region->cur++;
}
if(region->cur >= region->end) {
cur_region++;
continue;
}
*pos = region->cur;
*progress = region->cur_progress;
region->cur_progress++;
return true;
}
return false;
}
MutatorSampleContext *BaseDeterministicMutator::CreateSampleContext(Sample *sample) {
BaseDeterministicContext *context = new BaseDeterministicContext;
return context;
}
bool DeterministicByteFlipMutator::Mutate(Sample *inout_sample, PRNG *prng, std::vector<Sample *> &all_samples) {
size_t pos;
size_t value;
if(!context->GetNextByteToMutate(&pos, &value, 256)) {
return false;
}
if(pos >= inout_sample->size) {
inout_sample->Resize(pos + 1);
}
inout_sample->bytes[pos] = (char)(value);
return true;
}
DeterministicInterestingValueMutator::DeterministicInterestingValueMutator(bool use_default_values) {
if (use_default_values) {
AddDefaultInterestingValues<uint16_t>(interesting_values);
AddDefaultInterestingValues<uint32_t>(interesting_values);
// AddDefaultInterestingValues<uint64_t>(interesting_values);
}
}
bool DeterministicInterestingValueMutator::Mutate(Sample *inout_sample, PRNG *prng, std::vector<Sample *> &all_samples) {
size_t pos;
size_t value_index;
if(!context->GetNextByteToMutate(&pos, &value_index, interesting_values.size())) {
return false;
}
Sample *interesting_sample = &interesting_values[value_index];
if((pos + interesting_sample->size) > inout_sample->size) {
inout_sample->Resize(pos + interesting_sample->size);
}
memcpy(inout_sample->bytes + pos, interesting_sample->bytes, interesting_sample->size);
return true;
}
bool RangeMutator::Mutate(Sample* inout_sample, PRNG* prng, std::vector<Sample*>& all_samples) {
Mutator* child_mutator = child_mutators[0];
if (ranges->empty()) {
return child_mutator->Mutate(inout_sample, prng, all_samples);
}
// pick a range
Range& range = (*ranges)[prng->Rand() % ranges->size()];
// printf("Mutating range %zd %zd\n", range.from, range.to);
// extract the part we want to mutate
Sample rangesample;
inout_sample->Crop(range.from, range.to, &rangesample);
// mutate the cropped sample (if not empty)
if (inout_sample->size == 0) {
return child_mutator->Mutate(inout_sample, prng, all_samples);
} else {
child_mutator->Mutate(&rangesample, prng, all_samples);
}
// put the cropped part back where it belongs
if (range.from + rangesample.size > inout_sample->size) {
inout_sample->Resize(range.from + rangesample.size);
}
memcpy(inout_sample->bytes + range.from, rangesample.bytes, rangesample.size);
return true;
}
void RepeatMutator::UpdateStats() {
stats_mutex.Lock();
stats[next_stat] = last_num_repeats;
next_stat = (next_stat + 1) % REPEAT_STATS;
if(nstats >= REPEAT_STATS) {
std::vector<size_t> sort_array;
sort_array.assign(&(stats[0]), &(stats[REPEAT_STATS]));
std::sort(sort_array.begin(), sort_array.end());
median_num_repeats = sort_array[REPEAT_STATS/2];
float new_adapted_repeat_p = 1.0f - 1.0f/median_num_repeats;
if(new_adapted_repeat_p < 0.5) new_adapted_repeat_p = 0.5;
if(new_adapted_repeat_p != adapted_repeat_p) {
adapted_repeat_p = new_adapted_repeat_p;
printf("Adjusting mutation repeat probability to %g\n", adapted_repeat_p);
}
} else {
nstats++;
}
stats_mutex.Unlock();
}
void RepeatMutator::SaveGlobalState(FILE *fp) {
stats_mutex.Lock();
fwrite(stats, sizeof(stats), 1, fp);
fwrite(&nstats, sizeof(nstats), 1, fp);
fwrite(&next_stat, sizeof(next_stat), 1, fp);
fwrite(&median_num_repeats, sizeof(median_num_repeats), 1, fp);
fwrite(&adapted_repeat_p, sizeof(adapted_repeat_p), 1, fp);
stats_mutex.Unlock();
HierarchicalMutator::SaveGlobalState(fp);
}
void RepeatMutator::LoadGlobalState(FILE *fp) {
stats_mutex.Lock();
fread(stats, sizeof(stats), 1, fp);
fread(&nstats, sizeof(nstats), 1, fp);
fread(&next_stat, sizeof(next_stat), 1, fp);
fread(&median_num_repeats, sizeof(median_num_repeats), 1, fp);
fread(&adapted_repeat_p, sizeof(adapted_repeat_p), 1, fp);
stats_mutex.Unlock();
HierarchicalMutator::LoadGlobalState(fp);
}