-
Notifications
You must be signed in to change notification settings - Fork 671
/
Copy pathserving.py
151 lines (118 loc) · 4.91 KB
/
serving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# curl -X POST http://127.0.0.1:58003/tts -F "text=Testing this inference server." -F "speaker_ref_path=https://cdn.themetavoice.xyz/speakers/bria.mp3" -F "guidance=3.0" -F "top_p=0.95" --output out.wav
import logging
import shlex
import subprocess
import tempfile
import warnings
from pathlib import Path
from typing import Literal, Optional
import fastapi
import fastapi.middleware.cors
import tyro
import uvicorn
from attr import dataclass
from fastapi import File, Form, HTTPException, UploadFile, status
from fastapi.responses import Response
from fam.llm.fast_inference import TTS
from fam.llm.utils import check_audio_file
logger = logging.getLogger(__name__)
## Setup FastAPI server.
app = fastapi.FastAPI()
@dataclass
class ServingConfig:
huggingface_repo_id: str = "metavoiceio/metavoice-1B-v0.1"
"""Absolute path to the model directory."""
temperature: float = 1.0
"""Temperature for sampling applied to both models."""
seed: int = 1337
"""Random seed for sampling."""
port: int = 58003
quantisation_mode: Optional[Literal["int4", "int8"]] = None
# Singleton
class _GlobalState:
config: ServingConfig
tts: TTS
GlobalState = _GlobalState()
@app.get("/health")
async def health_check():
return {"status": "ok"}
@app.post("/tts", response_class=Response)
async def text_to_speech(
text: str = Form(..., description="Text to convert to speech."),
speaker_ref_path: Optional[str] = Form(None, description="Optional URL to an audio file of a reference speaker. Provide either this URL or audio data through 'audiodata'."),
audiodata: Optional[UploadFile] = File(None, description="Optional audio data of a reference speaker. Provide either this file or a URL through 'speaker_ref_path'."),
guidance: float = Form(3.0, description="Control speaker similarity - how closely to match speaker identity and speech style, range: 0.0 to 5.0.", ge=0.0, le=5.0),
top_p: float = Form(0.95, description="Controls speech stability - improves text following for a challenging speaker, range: 0.0 to 1.0.", ge=0.0, le=1.0),
):
# Ensure at least one of speaker_ref_path or audiodata is provided
if not audiodata and not speaker_ref_path:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Either an audio file or a speaker reference path must be provided.",
)
wav_out_path = None
try:
with tempfile.NamedTemporaryFile(suffix=".wav") as wav_tmp:
if speaker_ref_path is None:
wav_path = _convert_audiodata_to_wav_path(audiodata, wav_tmp)
check_audio_file(wav_path)
else:
# TODO: fix
wav_path = speaker_ref_path
if wav_path is None:
warnings.warn("Running without speaker reference")
assert guidance is None
wav_out_path = GlobalState.tts.synthesise(
text=text,
spk_ref_path=wav_path,
top_p=top_p,
guidance_scale=guidance,
)
with open(wav_out_path, "rb") as f:
return Response(content=f.read(), media_type="audio/wav")
except Exception as e:
# traceback_str = "".join(traceback.format_tb(e.__traceback__))
logger.exception(
f"Error processing request. text: {text}, speaker_ref_path: {speaker_ref_path}, guidance: {guidance}, top_p: {top_p}"
)
return Response(
content="Something went wrong. Please try again in a few mins or contact us on Discord",
status_code=500,
)
finally:
if wav_out_path is not None:
Path(wav_out_path).unlink(missing_ok=True)
def _convert_audiodata_to_wav_path(audiodata: UploadFile, wav_tmp):
with tempfile.NamedTemporaryFile() as unknown_format_tmp:
if unknown_format_tmp.write(audiodata.read()) == 0:
return None
unknown_format_tmp.flush()
subprocess.check_output(
# arbitrary 2 minute cutoff
shlex.split(f"ffmpeg -t 120 -y -i {unknown_format_tmp.name} -f wav {wav_tmp.name}")
)
return wav_tmp.name
if __name__ == "__main__":
for name in logging.root.manager.loggerDict:
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
logging.root.setLevel(logging.INFO)
GlobalState.config = tyro.cli(ServingConfig)
GlobalState.tts = TTS(
seed=GlobalState.config.seed,
quantisation_mode=GlobalState.config.quantisation_mode,
telemetry_origin="api_server",
)
app.add_middleware(
fastapi.middleware.cors.CORSMiddleware,
allow_origins=["*", f"http://localhost:{GlobalState.config.port}", "http://localhost:3000"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
uvicorn.run(
app,
host="0.0.0.0",
port=GlobalState.config.port,
log_level="info",
)