-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkadai2_5.py
189 lines (162 loc) · 7.41 KB
/
kadai2_5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from __future__ import print_function
from statistics import mode
from tkinter import Variable
#from math import gamma #コマンドライン引数を受け取る処理をするモジュール
import torch # ライブラリ「PyTorch」のtorchパッケージをインポート
import torch.nn as nn # 「ニューラルネットワーク」モジュールの別名定義
import torch.nn.functional as F #様々な関数を持つクラス
import torch.optim as optim#adam,SGDなどの最適化手法をもつモジュール
from torchvision import datasets,transforms#データの前処理に必要なモジュール
from torch.optim.lr_scheduler import StepLR#学習率の更新を行う関数
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
import time
class Net(nn.Module):
def __init__(self,input_size,hidden_size,output_size):
super(Net, self).__init__()#親のクラスを継承
self.fc1 = nn.Linear(input_size,hidden_size) # Linearは「全結合層」を指す(入力層、出力層)
self.fc2 = nn.Linear(hidden_size,output_size)# Linearは「全結合層」を指す(入力層、出力層)
def forward(self, x):
x = self.fc1(x)
x = torch.sigmoid(x)
output = self.fc2(x)
#output =torch.log_softmax(x, dim=1)
return output
#予測の精度を求める関数
def accuracy(self,x,t):
accuracy=0
y = self.forward(x)
#y=y.cpu().data.numpy()
y =torch.argmax(y, dim=1)#dim=1=列方向に見ていく(横)
#print(list(y))
#t=t.cpu().data.numpy()
for i in range(len(y)):
if(y[i]==t[i]):
accuracy+=1
return 1
#データ分割
train_images = np.load('kmnist-train-imgs.npz')['arr_0']
train_labels = np.load('kmnist-train-labels.npz')['arr_0']
test_images = np.load('kmnist-test-imgs.npz')['arr_0']
test_labels = np.load('kmnist-test-labels.npz')['arr_0']
transform=transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.1307,), (0.3081,))
])
#train_images = torch.tensor(train_images)#Tensor型に変換,微分可能にする
#train_images=train_images.to(torch.float)
#test_images = torch.tensor(test_images)#Tensor型に変換,微分可能にする
#test_images=test_images.to(torch.float)
train_labels = torch.LongTensor(train_labels)#Tensor型に変換
test_labels = torch.LongTensor(test_labels)#Tensor型に変換
dataset1=transform(train_images)
dataset2=transform(test_images)
train_set = torch.utils.data.TensorDataset(dataset1,train_labels)
test_set = torch.utils.data.TensorDataset(dataset2,test_labels)
batch_size=100
train_size=dataset1.shape[0]#2702
epoch=int(max(int(train_size / batch_size), 1))#27
lr=0.1
seed=0
epoch_num=1
train_loader = torch.utils.data.DataLoader(train_set,batch_size, shuffle = True,drop_last=True)#drop_last;余ったデータを捨てる
test_loader = torch.utils.data.DataLoader(test_set,batch_size, shuffle = True,drop_last=True)
use_cuda =torch.cuda.is_available()#cudaを使えと指定されcudaが使える場合にcudaを使用
torch.manual_seed(seed)#疑似乱数を作る時に使う、元となる数字。 シード値が同じなら常に同じ乱数が作られる。(再現性がある)
device = torch.device("cuda" if use_cuda else "cpu")#GPUを指定なければCPU
#device=torch.device("cpu")
#GPUに送る
train_x=dataset1.to(device)
train_t=train_labels.to(device)#修正
test_x=dataset2.to(device)
test_t=test_labels.to(device)#修正
train_loss_list = []
test_loss_list = []
train = []
test = []
epoch_num_list=[]
model = Net(2,20,3).to(device)#netインスタンス生成。modelはレイヤーの構成親クラスを継承
#推奨params lr=0.01β1=0.9,β2=0.999ϵ=1e−8
optimizer = optim.Adam(model.parameters(),lr=0.01)#最適化手法,model.parameters():自動で重みとバイアスを設定してくれる
#scheduler = StepLR(optimizer, step_size=1,gamma=0.1)#step_size:更新タイミングのエポック数,gamma:更新率
criterion = nn.CrossEntropyLoss()
#print(list(model.parameters()))
# 開始
start_time = time.perf_counter()
# ダミー処理
time.sleep(1)
#output = model.forward(train_x)
#print(list(output))
train_loss_list = []
train_acc_list = []
val_loss_list = []
val_acc_list = []
total_epoch=int(1e+4)
for epoch_num in range(total_epoch+1):
train_loss = 0
train_acc = 0
val_loss = 0
val_acc = 0
# 損失和
train_epoch_loss = 0.0
# 正解数
train_epoch_corrects = 0
model.train()
for k, (data, labels) in enumerate(train_loader):
data, labels = data.to(device), labels.to(device)
optimizer.zero_grad()
outputs = F.softmax(model.forward(data),dim=1)
loss =criterion(model.forward(data),labels)
loss.backward()
optimizer.step()
_,preds = torch.max(outputs, 1)#torch.maxは最大値(テンソル)とその要素位置の2つを返します_で最大値を受け取っている
train_loss += loss.item() * data.size(0)
# 正解数の合計を更新
train_acc += torch.sum(preds == labels.data)
# epochごとのlossと正解率を表示
avg_train_loss = train_loss / len(train_loader.dataset)
avg_train_acc = train_acc.double() / len(train_loader.dataset)
model.eval()
with torch.no_grad():
for data, labels in test_loader:
data = data.to(device)
labels = labels.to(device)
outputs =F.softmax(model.forward(data),dim=1)
loss =criterion(model.forward(data),labels)
_,preds = torch.max(outputs, 1)
val_loss += loss.item() * data.size(0)
val_acc += torch.sum(preds == labels.data)
avg_val_loss = val_loss / len(test_loader.dataset)
avg_val_acc = val_acc.double() / len(test_loader.dataset)
print('{} train_Loss: {:.6f} train_Acc: {:.6f} test_Loss: {:.6f} test_Acc: {:.6f}'.format(epoch_num,avg_train_loss,avg_train_acc.item(),avg_val_loss,avg_val_acc.item()))
epoch_num_list.append(epoch_num)
train_loss_list.append(avg_train_loss)
train_acc_list.append(avg_train_acc.item())
val_loss_list.append(avg_val_loss)
val_acc_list.append(avg_val_acc.item())
epoch_num=epoch_num+1
# 修了
end_time = time.perf_counter()
# 経過時間を出力(秒)
elapsed_time = end_time - start_time
print('elapsed time {}'.format(elapsed_time))
#print(list(model.parameters()))
train_acc_list=torch.tensor(train_acc_list)#tensor型に変更
val_acc_list=torch.tensor(val_acc_list)#tensor型に変更
train_loss_list=torch.tensor(train_loss_list)#tensor型に変更
val_loss_list=torch.tensor(val_loss_list)#tensor型に変更
train_acc_list =train_acc_list.cpu().data.numpy()#cpuに転送
val_acc_list = val_acc_list.cpu().data.numpy()#cpuに転送
train_loss_list = train_loss_list.cpu().data.numpy()#cpuに転送
val_loss_list = val_loss_list.cpu().data.numpy()#cpuに転送
plt.ylim([0,1])
plt.plot(epoch_num_list,train_acc_list,color='b',label='train')
plt.plot(epoch_num_list,val_acc_list ,color='r',label='test')
#plt.plot(epoch_num_list,train_loss_list,color='b',label='train')
#plt.plot(epoch_num_list,val_loss_list ,color='r',label='test')
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.legend()
plt.show()