-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGLFF_train.py
296 lines (242 loc) · 13.5 KB
/
GLFF_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os, torch, random
import numpy as np
import pandas as pd
from monai import transforms
from torch.utils.data import DataLoader
from prompt_trainer import trainer
from dataset.FusionDataset import FusionDataset
from models.GLFF_CA_Prompt import Global_with_Local_UnetClassification, Global_with_Local_Prompt_Fusion_UnetClassification, Local_Branch_Prompt_Fused2, Global_with_Local_noFusion, Global_with_Local_UnetClassification_Global_Prompt_Embedding, Global_Prompt
from optimizers.lr_scheduler import WarmupCosineSchedule,LinearWarmupCosineAnnealingLR
def get_data_loader(args):
local_file_root = "/research/d1/rshr/qxhu/PublicDataset/RSNA2023/preprocessed_data/our_methods"
global_file_root = "/research/d1/rshr/qxhu/PublicDataset/RSNA2023/preprocessed_data/baseline_methods"
labels_df = pd.read_csv('/research/d1/rshr/qxhu/PublicDataset/RSNA2023/preprocessed_data/label.csv', index_col="ID")
train_samples = []
with open('/research/d1/rshr/jxyu/projects/MICCAI2024_LocalGlobal/data_preprocessing/train_data.txt', 'r') as f:
lines = f.readlines()
for line in lines:
sample = line.strip()
train_samples.append(sample)
val_samples = []
with open('/research/d1/rshr/jxyu/projects/MICCAI2024_LocalGlobal/data_preprocessing/val_data.txt', 'r') as f:
lines = f.readlines()
for line in lines:
sample = line.strip()
val_samples.append(sample)
local_train_images = []
global_train_images = []
train_labels = []
for sample in train_samples:
name = int(sample.split('_')[0])
local_train_images.append(os.path.join(local_file_root, sample))
global_train_images.append(os.path.join(global_file_root, sample))
train_labels.append(labels_df.loc[name].values)
train_labels = np.array(train_labels, dtype=float)
train_labels_list = np.any(train_labels, axis=1).astype(int).tolist()
train_labels = torch.FloatTensor(train_labels)
local_val_images = []
global_val_images = []
val_labels = []
for sample in val_samples:
name = int(sample.split('_')[0])
local_val_images.append(os.path.join(local_file_root, sample))
global_val_images.append(os.path.join(global_file_root, sample))
val_labels.append(labels_df.loc[name].values)
val_labels = np.array(val_labels, dtype=float)
val_labels = torch.FloatTensor(val_labels)
x, y, z = args.resize_x, args.resize_y, args.resize_z
local_train_img_transform = transforms.Compose(
[
transforms.EnsureChannelFirst(channel_dim="no_channel"),
# transforms.Resize(spatial_size=(x, y, z), mode="area"),
transforms.RandFlip(prob=0.2, spatial_axis=0),
transforms.RandFlip(prob=0.2, spatial_axis=1),
transforms.RandFlip(prob=0.2, spatial_axis=2),
transforms.RandRotate90(prob=0.2, max_k=3),
transforms.RandScaleIntensity(factors=0.15, prob=0.3),
transforms.RandShiftIntensity(offsets=0.15, prob=0.3),
# Add more intensity-based transform
transforms.RandAdjustContrast(prob=0.2),
# transforms.RandHistogramShift(prob=0.2),
# transforms.RandGibbsNoise(prob=0.2),
# transforms.RandKSpaceSpikeNoise(prob=0.2)
]
)
# add more intensity-based transform.
local_train_seg_transform = transforms.Compose(
[
transforms.EnsureChannelFirst(channel_dim="no_channel"),
# transforms.Resize(spatial_size=(x, y, z), mode="nearest"),
transforms.RandFlip(prob=0.2, spatial_axis=0),
transforms.RandFlip(prob=0.2, spatial_axis=1),
transforms.RandFlip(prob=0.2, spatial_axis=2),
transforms.RandRotate90(prob=0.2, max_k=3),
]
)
local_val_img_transform = transforms.Compose(
[
transforms.EnsureChannelFirst(channel_dim="no_channel"),
# transforms.Resize(spatial_size=(x, y, z), mode="area"),
]
)
local_val_seg_transform = transforms.Compose(
[
transforms.EnsureChannelFirst(channel_dim="no_channel"),
# transforms.Resize(spatial_size=(x, y, z), mode="nearest"),
]
)
global_train_img_transform = transforms.Compose(
[
transforms.EnsureChannelFirst(channel_dim="no_channel"),
transforms.Resize(spatial_size=(x, y, z), mode="area"),
transforms.RandFlip(prob=0.2, spatial_axis=0),
transforms.RandFlip(prob=0.2, spatial_axis=1),
transforms.RandFlip(prob=0.2, spatial_axis=2),
transforms.RandRotate90(prob=0.2, max_k=3),
transforms.RandScaleIntensity(factors=0.15, prob=0.3),
transforms.RandShiftIntensity(offsets=0.15, prob=0.3),
# Add more intensity-based transform
transforms.RandAdjustContrast(prob=0.2),
# transforms.RandHistogramShift(prob=0.2),
# transforms.RandGibbsNoise(prob=0.2),
# transforms.RandKSpaceSpikeNoise(prob=0.2)
]
)
# add more intensity-based transform.
global_train_seg_transform = transforms.Compose(
[
transforms.EnsureChannelFirst(channel_dim="no_channel"),
transforms.Resize(spatial_size=(x, y, z), mode="nearest"),
transforms.RandFlip(prob=0.2, spatial_axis=0),
transforms.RandFlip(prob=0.2, spatial_axis=1),
transforms.RandFlip(prob=0.2, spatial_axis=2),
transforms.RandRotate90(prob=0.2, max_k=3),
]
)
global_val_img_transform = transforms.Compose(
[
transforms.EnsureChannelFirst(channel_dim="no_channel"),
transforms.Resize(spatial_size=(x, y, z), mode="area"),
]
)
global_val_seg_transform = transforms.Compose(
[
transforms.EnsureChannelFirst(channel_dim="no_channel"),
transforms.Resize(spatial_size=(x, y, z), mode="nearest"),
]
)
train_ds = FusionDataset(local_npz_files=local_train_images, global_npz_files=global_train_images, labels=train_labels, local_img_transforms=local_train_img_transform, local_seg_transforms=None, global_img_transforms=global_train_img_transform, global_seg_transforms=None)
train_loader = DataLoader(train_ds, batch_size=args.batch_size, shuffle=True, num_workers=6)
# train_loader = DataLoader(train_ds, batch_size=args.batch_size,
# sampler=ImbalancedDatasetSampler(dataset=train_ds, labels=train_labels_list),
# )
val_ds = FusionDataset(local_npz_files=local_val_images, global_npz_files=global_val_images, labels=val_labels, local_img_transforms=local_val_img_transform, local_seg_transforms=None, global_img_transforms=global_val_img_transform, global_seg_transforms=None)
val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=2)
return train_loader, val_loader
def setup_seed(seed=42):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def _get_models(args):
if args.model_name == "local_global":
model = Global_with_Local_UnetClassification(out_channels = 3, local_prompt = False)
model.load_params(torch.load(args.pretrain, map_location='cpu')['net']) # load pretrain model
elif args.model_name == "local_prompt_global":
model = Global_with_Local_UnetClassification(out_channels = 3, local_prompt = True)
model.load_params(torch.load(args.pretrain, map_location='cpu')['net']) # load pretrain model
word_embedding = torch.load("four_organ.pth")
model.localbranch.organ_embedding.data = word_embedding.float()
print('load word embedding')
# elif args.model_name == "local_prompt_global_prompt_0.25":
# model = Global_with_Local_UnetClassification(out_channels = 3, local_prompt = True)
# model.load_params(torch.load(args.pretrain, map_location='cpu')['net']) # load pretrain model
# word_embedding = torch.load("four_organ.pth")
# model.localbranch.organ_embedding.data = word_embedding.float()
# print('load word embedding')
elif args.model_name == "local_prompt_global_prompt":
model = Global_with_Local_UnetClassification(out_channels = 3, local_prompt = True)
model.load_params(torch.load(args.pretrain, map_location='cpu')['net']) # load pretrain model
word_embedding = torch.load("four_organ.pth")
model.localbranch.organ_embedding.data = word_embedding.float()
print('load word embedding')
# args.prompt_loss = True
# elif args.model_name == "local_prompt_fusion_global_prompt":
# model = Global_with_Local_Prompt_Fusion_UnetClassification(out_channels = 3, local_prompt = True)
# model.load_params(torch.load(args.pretrain, map_location='cpu')['net']) # load pretrain model
# word_embedding = torch.load("four_organ.pth")
# model.localbranch.organ_embedding.data = word_embedding.float()
# print('load word embedding')
# elif args.model_name == "local_prompt_fusionOneWay":
# model = Local_Branch_Prompt_Fused2(out_channels=3, local_prompt=True)
# model.load_params(torch.load(args.pretrain, map_location='cpu')['net']) # load pretrain model
# word_embedding = torch.load("four_organ.pth")
# model.localbranch.organ_embedding.data = word_embedding.float()
# print('load word embedding')
elif args.model_name == "Global_with_Local_noFusion":
model = Global_with_Local_noFusion(out_channels = 3, local_prompt = False)
model.load_params(torch.load(args.pretrain, map_location='cpu')['net']) # load pretrain model
# elif args.model_name == "local_prompt_global_singleFusion":
# model = Global_with_Local_UnetClassification(out_channels = 3, local_prompt = True, CrossAttention = False)
# model.load_params(torch.load(args.pretrain, map_location='cpu')['net']) # load pretrain model
# word_embedding = torch.load("four_organ.pth")
# model.localbranch.organ_embedding.data = word_embedding.float()
# print('load word embedding')
# elif args.model_name == "local_prompt_global_prompt_singleFusion_embedding":
# model = Global_with_Local_UnetClassification_Global_Prompt_Embedding(out_channels = 3, local_prompt = True, CrossAttention= False)
# model.load_params(torch.load(args.pretrain, map_location='cpu')['net']) # load pretrain model
# word_embedding = torch.load("four_organ.pth")
# model.localbranch.organ_embedding.data = word_embedding.float()
# print('load word embedding')
elif args.model_name == "Global_Prompt":
model = Global_Prompt(out_channels = 3)
else:
raise RuntimeError("Do not support the method!")
return model
def main():
import argparse
parser = argparse.ArgumentParser(description='medical segmentation contest')
parser.add_argument('--max_epochs', default=400, type=int)
parser.add_argument('--val_every', default=10, type=int)
parser.add_argument('--lr', default=5e-4, type=float)
parser.add_argument('--weight_decay', default=1e-5, type=float)
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--log_dir', default="runs", type=str)
parser.add_argument('--model_name', default=f"GLFF_eph400_lr5e-4_Trans6_Global128_debug", type=str)
parser.add_argument('--pretrain', default=f"./unet.pth", type=str)
parser.add_argument('--resize_x', default=128, type=int)
parser.add_argument('--resize_y', default=128, type=int)
parser.add_argument('--resize_z', default=128, type=int)
parser.add_argument('--alfa', default=1, type=float)
parser.add_argument('--prompt_loss', default=False, type=bool)
args = parser.parse_args()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device('cpu')
args.device = device
# Print All Config
print("MAIN Argument values:")
for k, v in vars(args).items():
print(k, '=>', v)
print('-----------------')
# loader
train_loader, val_loader = get_data_loader(args)
model = _get_models(args)
# model = Global_with_Local_UnetClassification(out_channels = 3)
# model.load_params(torch.load(args.pretrain, map_location='cpu')['net']) # load pretrain model
# word_embedding = torch.load("four_organ.pth")
# model.localbranch.organ_embedding.data = word_embedding.float()
# print('load word embedding')
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.99)
scheduler = LinearWarmupCosineAnnealingLR(
optimizer, warmup_epochs=10, max_epochs=args.max_epochs
)
loss_function = torch.nn.BCEWithLogitsLoss()
prompt_loss = args.prompt_loss
trainer(model, train_loader, val_loader, optimizer, scheduler, loss_function, prompt_loss, args)
if __name__ == "__main__":
setup_seed()
main()
# python GLFF_train.py --model_name Global_prompt --alfa 0.9 --prompt_loss True
# python GLFF_train.py --model_name local_prompt_global_prompt --alfa 0.8 --prompt_loss True
# python GLFF_train.py --model_name local_prompt_global_prompt_0.25 --alfa 0.75 --prompt_loss Truesqu