-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_resnet.py
100 lines (85 loc) · 3.7 KB
/
generate_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os.path
import shutil
import warnings
warnings.filterwarnings("ignore")
import pickle
import random
import argparse
import numpy as np
from tqdm import tqdm
import torch
from torch import optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from dataset.esd import ESDDataset
from utils.parser import ParserUse
from model.resnet import ResNet
def generate_features(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
model = ResNet(out_channels=args.out_classes, has_fc=False)
paras = torch.load(args.resnet_model)["model"]
paras = {k: v for k, v in paras.items() if "fc" not in k}
paras = {k: v for k, v in paras.items() if "embed" not in k}
model.load_state_dict(paras, strict=True)
model.cuda()
model.eval()
with open(args.data_file, "rb") as f:
data_dict = pickle.load(f)
emb_dataset = ESDDataset(data_dict=data_dict, data_idxs=args.train_names + args.val_names + args.test_names, is_train=False, get_name=True, has_label=args.has_label)
emb_loader = DataLoader(dataset=emb_dataset, batch_size=args.resnet_train_bs, num_workers=args.num_worker, shuffle=False, drop_last=False)
feature_embs = {}
with torch.no_grad():
for data in tqdm(emb_loader, total=len(emb_loader)):
imgs, base_names = data[0].cuda(non_blocking=True), data[-1]
base_names = list(base_names)
for idx, base_name in enumerate(base_names):
if "--" in base_name:
base_names[idx] = base_name.split("--")[0]
else:
base_names[idx] = base_name.split("-")[0]
img_features = model(imgs).cpu().numpy()
for idx, data_name in enumerate(base_names):
# try:
if data_name in feature_embs:
feature_embs[data_name].append(img_features[idx])
else:
feature_embs[data_name] = [img_features[idx]]
# except:
# print(base_names)
# print(">> "*10, len(base_names))
# assert 1==2, img_features.shape
# Check length of embedding
with open(args.data_file, "rb") as f:
all_data = pickle.load(f)
data_names = list(feature_embs.keys())
for data_name in data_names:
if len(all_data[data_name]["img"]) != len(feature_embs[data_name]):
print(f"Error in data {data_name}")
print(f"Number of images {len(all_data[data_name]['img'])}")
print(f"Number of features {len(feature_embs[data_name])}")
raise ValueError("#imgs != #features")
args.emb_file = os.path.join(os.path.dirname(args.emb_file), f"emb_ESDSafety{args.log_time}.pkl")
print(">>>"*10, "Emb dataset saved to ", args.emb_file)
with open(args.emb_file, "wb") as f:
pickle.dump(feature_embs, f)
## save features as *.npy
# if os.path.isdir(args.features_folder):
# shutil.rmtree(args.features_folder)
# os.makedirs(args.features_folder)
# for data_name, features in feature_embs.items():
# features = np.stack(features, axis=0)
# save_file = os.path.join(args.features_folder, f"{data_name}.npy")
# with open(save_file, "wb") as f:
# np.save(f, features)
return args
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--cfg', default='train', required=True, type=str,
help='Your detailed configuration of the network')
args = parser.parse_args()
args = ParserUse(args.cfg, log="generate").add_args(args)
ckpts = args.makedir()
generate_features(args)