Skip to content

Latest commit

 

History

History
194 lines (148 loc) · 5.06 KB

performance-testing.livemd

File metadata and controls

194 lines (148 loc) · 5.06 KB

Performance testing with LiveBook

Setup

In this notebook we will use the VegaLite library to investigate the performance of an API call. The same technique can be used for any Elixir function call - including shelling out with System.cmd/3. We will use Kino to render the graph as we make requests, which may be useful for longer running performance tests.

We also generate some basic statistics eg. min/max/median run time.

First we install our dependencies.

  • VegaLite for drawing graphs
  • HTTPoison for making the URL request
  • Kino for rendering the graph dyamically
  • Statistics for calculating summary stats from the data
# Make sure you are running on a machine with at least 512MB of RAM
Mix.install([
  {:vega_lite, "~> 0.1.0"},
  {:httpoison, "~> 1.8"},
  {:kino, "~> 0.2.0"},
  {:statistics, "~> 0.6.2"}
])
alias VegaLite, as: Vl

Setup: Stats Summary Module

The following is a simple GenServer that can store data points pushed to it, and then generate a statistical summary of the data.

defmodule StatsSummary do
  use GenServer
  # Client
  def init do
    GenServer.start_link(__MODULE__, nil)
  end

  def push(instance, %{} = map) do
    GenServer.call(instance, {:push, map})
  end

  def show(instance) do
    GenServer.call(instance, :show)
  end

  def summarise(instance, field) when is_atom(field) do
    GenServer.call(instance, {:summarise, field})
  end

  def clear(instance) do
    GenServer.call(instance, :clear)
  end

  # Server callbacks
  def init(_) do
    {:ok, []}
  end

  def handle_call({:push, %{} = map}, _from, state) do
    insert = :maps.filter(fn _, v -> is_number(v) end, map)
    {:reply, :ok, [insert | state]}
  end

  def handle_call(:show, _from, state) do
    {:reply, state, state}
  end

  def handle_call({:summarise, field}, _from, state) do
    values = get_values(state, field)

    data = [
      {"Min", Statistics.min(values)},
      {"Median", Statistics.median(values)},
      {"Max", Statistics.max(values)},
      {"Standard Deviation", Statistics.stdev(values)}
    ]

    {:reply, data, state}
  end

  def handle_call(:clear, _from, _state) do
    {:reply, :ok, []}
  end

  # Private helpers
  defp get_values(maps, field) when is_atom(field) do
    Enum.flat_map(maps, fn m ->
      case Map.get(m, field) do
        nil -> []
        x -> [x]
      end
    end)
  end
end
# Example use

{:ok, instance} = StatsSummary.init()
StatsSummary.push(instance, %{a: 1, b: 100})
StatsSummary.push(instance, %{a: 2, b: 150})
StatsSummary.push(instance, %{a: 3, b: 200})

StatsSummary.summarise(instance, :a) |> Kino.render()
StatsSummary.summarise(instance, :b)

HTTP request performance testing

We use inputs for the URL and for the number of iterations. We request the given URL the given number of times, and record how many milliseconds each request takes. We draw a live updating graph of this as the requests are made.

First, we convert our inputs into variables. Note that LiveBook appends a newline to each input, so we need to remove this.

url = IO.gets("URL: ") |> String.trim()
{iterations, _} = IO.gets("Iterations: ") |> String.trim() |> Integer.parse()
:ok

Next we set up our function to time repeatedly. In this case we use a straightforward call to HTTPoison.get!.

  • We could use different HTTPoison methods or add headers/cookies/a request body etc.
  • We could use System.cmd/3 to shell out to any shell function
  • We could use any other Elixir function

Note that the function must return :ok

request_function = fn ->
  HTTPoison.get!(url)
  :ok
end
# Initialise a StatsSummary instance to store the data points
{:ok, stats_instance} = StatsSummary.init()

widget =
  Vl.new(width: 600, height: 400, title: "Performance for #{url}")
  |> Vl.mark(:line, values: true)
  |> Vl.encode_field(:x, "iteration", type: :quantitative, title: "Iteration")
  |> Vl.encode_field(:y, "time", type: :quantitative, title: "Time (ms)")
  |> Kino.VegaLite.new()
  |> Kino.render()

for i <- 1..iterations do
  {microseconds, :ok} = :timer.tc(request_function)
  milliseconds = microseconds / 1000
  point = %{iteration: i, time: milliseconds}
  Kino.VegaLite.push(widget, point)
  StatsSummary.push(stats_instance, point)
end

:ok

Finally we can render the summary statistics.

The following code shows a very simple method of converting it to markdown, and rendering it with Kino.Markdown

To change which statistics are produced, update StatsSummary.handle_call({:summarise, field}, _from, state)

to2dp = fn float -> :erlang.float_to_binary(float, decimals: 2) end

data = StatsSummary.summarise(stats_instance, :time)

markdown =
  for {stat, value} <- data do
    "- **#{stat}**: #{to2dp.(value)}"
  end
  |> Enum.join("\n")

Kino.Markdown.new(markdown)