Skip to content

Latest commit

 

History

History
79 lines (70 loc) · 2.94 KB

paper.md

File metadata and controls

79 lines (70 loc) · 2.94 KB
title tags authors affiliations date bibliography
Benchmark denoising strategies on fMRIPrep outputs
fMRIPrep
denoising
fMRI
name affiliation orcid
Hao-Ting Wang
1, 7
0000-0003-4078-2038
name affiliation orchid
Steven L Meisler
2, 3
0000-0002-8888-1572
name affiliation orchid
Hanad Sharmarke
1
name affiliation orchid
François Paugam
4
name affiliation orchid
Nicolas Gensollen
5
0000-0001-7199-9753
name affiliation orchid
Bertrand Thirion
5
0000-0001-5018-7895
name affiliation orchid
Christopher J Markiewicz
6
0000-0002-6533-164X
name affiliation orchid
Pierre Bellec
1, 7
0000-0002-9111-0699
name index
Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada
1
name index
Harvard University, MA, USA
2
name index
Massachusetts Institute of Technology, MA, USA
3
name index
Computer Science and Operations Research Department, Université de Montréal, Montréal, Québec, Canada
4
name index
Inria, CEA, Université Paris-Saclay, Paris, France
5
name index
Department of Psychology, Stanford University, Stanford, United States
6
name index
Psychology Department, Université de Montréal, Montréal, Québec, Canada
7
05 October 2021
paper.bib

Summary

Various fMRI denoising benchmark has been published in the past, however the impact of the denoising strategies has yet to be evaluated on the popular minimal preprocessing tool fMRIPrep [@fmriprep1]. The confound output of fMRIPrep presented the users with a range of possible nusianse regressors. While users are benifted from a wide selection of regressors, without understanding of the literature one can pick a combination of regressors that reintroduce noise to the signal. Current work aims to introduce an application programming interface (API) to standardise fMRIPrep confounds retrieval, and provide benchmarks of different strategies using functional connectivity generated from resting state data. The main tool is a part of nilearn [@nilearn].

Overview of API.\label{top_level_fig}

Acknowledgements

The initial API was started by Hanad Sharmarke and Pierre Bellec. The implementation was completed by Hao-Ting Wang, Steven Meisler, François Paugam, and Pierre Bellec. Hao-Ting Wang migrated the code base to nilearn. Nicolas Gensollen and Bertrand Thirion reviewed the code migrated to nilearn. We thank Chris Markiewicz for feedbacks related to fMRIPrep.

Hao-Ting Wang and Pierre Bellec drafted the paper.

Please see the original repository for a full history of development and contributors.

References