title | tags | authors | affiliations | date | bibliography | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Benchmark denoising strategies on fMRIPrep outputs |
|
|
|
05 October 2021 |
paper.bib |
Various fMRI denoising benchmark has been published in the past,
however the impact of the denoising strategies has yet to be evaluated on the popular minimal preprocessing tool fMRIPrep [@fmriprep1].
The confound output of fMRIPrep presented the users with a range of possible nusianse regressors.
While users are benifted from a wide selection of regressors,
without understanding of the literature one can pick a combination of regressors that reintroduce noise to the signal.
Current work aims to introduce an application programming interface (API) to standardise fMRIPrep confounds retrieval,
and provide benchmarks of different strategies using functional connectivity generated from resting state data.
The main tool is a part of
nilearn
[@nilearn].
The initial API was started by Hanad Sharmarke and Pierre Bellec.
The implementation was completed by Hao-Ting Wang, Steven Meisler, François Paugam, and Pierre Bellec.
Hao-Ting Wang migrated the code base to nilearn
.
Nicolas Gensollen and Bertrand Thirion reviewed the code migrated to nilearn
.
We thank Chris Markiewicz for feedbacks related to fMRIPrep.
Hao-Ting Wang and Pierre Bellec drafted the paper.
Please see the original repository for a full history of development and contributors.