forked from tanmaysurana/HyPost
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
154 lines (115 loc) · 4.93 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from typing import Literal
import fire
import torch
import transformers
from datasets import load_dataset
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from h2t_lora.utils.prompter import Prompter
from tqdm import tqdm
import json
import editdistance
from generate_data.whisper.whisper.normalizers import EnglishTextNormalizer
from nemo_text_processing.text_normalization.normalize import Normalizer
from nltk.tokenize import RegexpTokenizer
whisper_normalizer = EnglishTextNormalizer()
nemo_normalizer = Normalizer(input_case='cased', lang='en')
wordpunct_tokenizer = RegexpTokenizer(r'[a-zA-Z]+|[0-9.,]+|[^\w\s]+')
def eval(
# model/data params
lora_path: str = "",
data_path: str = "", # required
base_model: str = "meta-llama/Llama-2-7b-hf",
# training hyperparams
batch_size: int = 64,
cutoff_len: int = 1024,
prompt_template_name: str = "HyPost-LoRA", # The prompt template to use
spoken_form_output: bool = False, # set to true for hyporadise
input_type: Literal['multihyp', 'singlehyp', 'rephyp'] = 'multihyp', # multihyp: multiple hypotheses (HyPost), singlehyp: single hypothesis (GTN), rephyp: one hypothesis repeated 5 times
output_path: str = "" # required
):
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
prompter = Prompter(prompt_template_name)
device_map = "auto"
model_ = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device_map,
token="<HF_TOKEN>"
)
tokenizer = AutoTokenizer.from_pretrained(base_model, token="<HF_TOKEN>")
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
tokenizer.padding_side = "left" # Allow batched inference
def tokenize(prompt):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None
)
return result
def generate_and_tokenize_prompt(data_point):
input2 = None
if input_type == 'multihyp':
input2 = data_point["input"][1:]
if input_type == 'singlehyp':
input2 = None
if input_type == 'rephyp':
input2 = [data_point["input"][0]]*4
prompt = prompter.generate_prompt(
input=data_point["input"][0],
input2=input2,
)
tokenized_full_prompt = tokenize(prompt)
return tokenized_full_prompt
model = PeftModel.from_pretrained(model_, lora_path, adapter_name="lora_1")
model.eval()
with open(data_path) as f:
data = json.load(f)
eval_prompts = [generate_and_tokenize_prompt(d) for d in data]
print(
"\n If there's a warning about missing keys above, please disregard :)"
)
def calculate_wer(pre, ref):
return editdistance.eval(pre, ref) / len(ref)
best_wers = []
output_file = open(output_path, "w")
def get_ter_report(batch, res):
for i, r in zip(batch, res):
try:
r = prompter.get_response(r)
r = r.strip().split("\n")[0].strip()
except:
r = "<unk>"
output_file.write(r + "\n")
normalized_r = nemo_normalizer.normalize(r, verbose=False, punct_post_process=True)
normalized_r = whisper_normalizer(normalized_r).strip()
wer = calculate_wer(normalized_r.split(), i['normalized_output'].split())
ter = 0.0
if not spoken_form_output:
ter = calculate_wer(wordpunct_tokenizer.tokenize(r.strip()), wordpunct_tokenizer.tokenize(i['output']))
best_wers.append({ "best_hyp_wer": i['ter'], "wer": wer, "ter": ter })
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
)
with torch.no_grad():
for i in tqdm(range(0, len(eval_prompts), batch_size)):
batch = eval_prompts[i:i+batch_size]
tokenized_batch = data_collator(batch)
tokenized_batch = tokenized_batch['input_ids'].to("cuda")
outputs = model.generate(input_ids=tokenized_batch, max_new_tokens=256, pad_token_id=0, do_sample=False, top_p=None)
res = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)
get_ter_report(data[i:i+batch_size], res)
print( "Best Hypothesis WER (Normalized):", sum([x["best_hyp_wer"] for x in best_wers]) / len(best_wers) )
print( "WER (Normalized):", sum([x["wer"] for x in best_wers]) / len(best_wers) )
print( "TER (Denormalized):", sum([x["ter"] for x in best_wers]) / len(best_wers) )
if __name__ == "__main__":
fire.Fire(eval)