-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
316 lines (241 loc) · 7.31 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""
Functions
"""
import random
from copy import deepcopy
from itertools import combinations
import networkx as nx
import numpy as np
import xgi
__all__ = [
"compute_eigenvalues",
"compute_eigenvalues_multi",
"shuffle_hyperedges",
"node_swap",
"find_triangles",
"flag_complex_d2",
"random_flag_complex_d2",
"degree_corr",
"deg_hetero_ratio",
]
def compute_eigenvalues(H, order, weight, rescale_per_node=True):
"""Returns the Lyapunov exponents of corresponding to the Laplacian of order d.
Parameters
----------
HG : xgi.HyperGraph
Hypergraph
order : int
Order to consider.
weight: float
Weight, i.e coupling strenght gamma in [1]_.
rescale_per_node: bool, (default=True)
Whether to rescale each Laplacian of order d by d (per node).
Returns
-------
lyap : array
Array of dim (N,) with unsorted Lyapunov exponents
"""
# compute Laplacian
L = xgi.laplacian(H, order, rescale_per_node=rescale_per_node)
K = xgi.degree_matrix(H, order)
# compute eigenvalues
eivals, _ = np.linalg.eigh(L)
lyap = -(weight / np.mean(K)) * eivals
return lyap
def compute_eigenvalues_multi(H, orders, weights, rescale_per_node=True):
"""Returns the Lyapunov exponents of corresponding to the muliotder Laplacian.
Parameters
----------
HG : xgi.HyperGraph
Hypergraph
orders : list of int
Orders of interactions to consider.
weights: list of float
Weight of each order, i.e coupling strenghts gamma_i in [1]_.
rescale_per_node: bool, (default=True)
Whether to rescale each Laplacian of order d by d (per node).
Returns
-------
lyap : array
Array of dim (N,) with unsorted Lyapunov exponents
"""
# compute multiorder Laplacian
L_multi = xgi.multiorder_laplacian(
H, orders, weights, rescale_per_node=rescale_per_node
)
# compute eigenvalues
eivals_multi, _ = np.linalg.eigh(L_multi)
lyap_multi = -eivals_multi
return lyap_multi
def shuffle_hyperedges(S, order, p):
"""Shuffle existing hyperdeges of order d with probablity p
Parameters
----------
S: xgi.HyperGraph
Hypergraph
order: int
Order of hyperedges to shuffle
p: float
Probability of shuffling each hyperedge
Returns
-------
H: xgi.HyperGraph
Hypergraph with edges of order d shuffled
"""
nodes = S.nodes
H = xgi.Hypergraph(S)
d_hyperedges = H.edges.filterby("order", order).members(dtype=dict)
for id_, members in d_hyperedges.items():
if random.random() <= p:
H.remove_edge(id_)
new_hyperedge = tuple(random.sample(nodes, order + 1))
while new_hyperedge in H._edge.values():
new_hyperedge = tuple(random.sample(nodes, order + 1))
H.add_edge(new_hyperedge)
assert H.num_nodes == S.num_nodes
assert xgi.num_edges_order(H, 1) == xgi.num_edges_order(S, 1)
assert xgi.num_edges_order(H, 2) == xgi.num_edges_order(S, 2)
return H
def node_swap(H, nid1, nid2, id_temp=-1, order=None):
"""Swap node nid1 and node nid2 in all edges of order order that contain them
Parameters
----------
H: HyperGraph
Hypergraph to consider
nid1: node ID
ID of first node to swap
nid2: node ID
ID of second node to swap
id_temp: node ID
Temporary ID given to nodes when swapping
order: {int, None}, default: None
If None, consider all orders. If an integer,
consider edges of that order.
Returns
-------
HH: HyperGraph
"""
# make sure id_temps does not exist yet
while id_temp in H.edges:
id_temp -= 1
if order:
edge_dict = H.edges.filterby("order", order).members(dtype=dict).copy()
else:
edge_dict = H.edges.members(dtype=dict).copy()
new_edge_dict = deepcopy(edge_dict)
HH = H.copy()
for key, members in edge_dict.items():
if nid1 in members:
members.remove(nid1)
members.add(id_temp)
new_edge_dict[key] = members
for key, members in new_edge_dict.items():
if nid2 in members:
members.remove(nid2)
members.add(nid1)
new_edge_dict[key] = members
for key, members in new_edge_dict.items():
if id_temp in members:
members.remove(id_temp)
members.add(nid2)
new_edge_dict[key] = members
HH.remove_edges_from(edge_dict)
HH.add_edges_from(new_edge_dict)
return HH
def find_triangles(G):
"""Returns list of 3-node cliques present in a graph
Parameters
----------
G : networkx Graph
Graph to consider
Returns
-------
list of triangles
"""
triangles = set(
frozenset((n, nbr, nbr2))
for n in G
for nbr, nbr2 in combinations(G[n], 2)
if nbr in G[nbr2]
)
return [set(tri) for tri in triangles]
def flag_complex_d2(G, p2=None):
"""Returns list of 3-node cliques present in a graph
Parameters
----------
G : networkx Graph
Graph to consider
p2: float
Probability (between 0 and 1) of filling empty triangles in graph G
Returns
-------
S : xgi.SimplicialComplex
"""
nodes = G.nodes()
edges = G.edges()
S = xgi.SimplicialComplex()
S.add_nodes_from(nodes)
S.add_simplices_from(edges)
triangles_empty = find_triangles(G)
if p2:
triangles = [el for el in triangles_empty if random.random() <= p2]
else:
triangles = triangles_empty
S.add_simplices_from(triangles)
return S
def random_flag_complex_d2(N, p, seed=None):
"""Generate a maximal simplicial complex (up to order 2) from a
:math:`G_{N,p}` Erdős-Rényi random graph by filling all empty triangles with 2-simplices.
Parameters
----------
N : int
Number of nodes
p : float
Probabilities (between 0 and 1) to create an edge
between any 2 nodes
seed : int or None (default)
The seed for the random number generator
Returns
-------
SimplicialComplex
Notes
-----
Computing all cliques quickly becomes heavy for large networks.
"""
if seed is not None:
random.seed(seed)
if (p < 0) or (p > 1):
raise ValueError("p must be between 0 and 1 included.")
G = nx.fast_gnp_random_graph(N, p, seed=seed)
return flag_complex_d2(G)
def degree_corr(H):
"""Return the cross-order degree correlation of hypergraph H
Parameters
----------
H: xgi.Hypergraph
Hypergraph to consider
Returns
-------
float
"""
K1 = xgi.degree_matrix(H, order=1)
K2 = xgi.degree_matrix(H, order=2)
return np.corrcoef(K1, K2, rowvar=False)[0, 1]
def deg_hetero_ratio(HG):
"""Return the degree heterogeneity ratio of hypergraph H
Parameters
----------
H: xgi.Hypergraph
Hypergraph to consider
Returns
-------
float
"""
k1_max = HG.nodes.degree(order=1).max()
k1_mean = HG.nodes.degree(order=1).mean()
k2_max = HG.nodes.degree(order=2).max()
k2_mean = HG.nodes.degree(order=2).mean()
h1 = (k1_max - k1_mean) / k1_mean
h2 = (k2_max - k2_mean) / k2_mean
r2 = h2 / h1 # eq 12
return r2