This repository has been archived by the owner on Oct 16, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_core.py
executable file
·316 lines (289 loc) · 10.2 KB
/
example_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#!/usr/bin/python
# - # Copyright 2016 Max Fischer
# - #
# - # Licensed under the Apache License, Version 2.0 (the "License");
# - # you may not use this file except in compliance with the License.
# - # You may obtain a copy of the License at
# - #
# - # http://www.apache.org/licenses/LICENSE-2.0
# - #
# - # Unless required by applicable law or agreed to in writing, software
# - # distributed under the License is distributed on an "AS IS" BASIS,
# - # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# - # See the License for the specific language governing permissions and
# - # limitations under the License.
from __future__ import print_function
import time
import math
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
import argparse
import sys
import json
from cpy2py import TwinMaster
from cpy2py.utility.compat import range
import example_module
CLI = argparse.ArgumentParser()
CLI.add_argument(
'callable',
nargs='?',
help='callable to benchmark. [default: %(default)s]',
default='example_module.compute',
const='example_module.compute',
)
CLI.add_argument(
'-r',
'--repetitions',
type=int,
help='Repetitions per power. [default: %(default)s]',
default=4,
)
CLI.add_argument(
'-p',
'--power',
type=int,
help='Maximum power of problem size. [default: %(default)s]',
default=6,
)
CLI.add_argument(
'-b',
'--base',
type=int,
help='Base of problem size. [default: %(default)s]',
default=10,
)
CLI.add_argument(
'-j',
'--json',
nargs='?',
help='Save results as JSON. [default: %(default)s]',
const='%(callable_name)s.json',
)
OPTIONS = CLI.parse_args()
def get_callable(callable_string):
"""
Load a callable based on <module>.<name>
:param callable_string: callable name of the form <module>.<name>
:type callable_string: str
"""
call_module, _, call_name = callable_string.rpartition('.')
if not call_module:
raise ValueError("callable must reside in module/package. Expected '<package>.<callable>'")
__import__(call_module)
try:
return getattr(sys.modules[call_module], call_name)
except AttributeError:
raise ValueError("no callable '%s' in module '%s'" % (call_name, call_module))
def get_time(call_result):
"""Extract timing information from nested timing call"""
tot_tme, call_result = call_result
call_tme, _ = call_result
return tot_tme, call_tme, tot_tme - call_tme
def fmt_time(call_result):
"""Format timing information from nested timing call"""
return '%7.5f %7.5f %7.5f' % get_time(call_result)
TME_HEADER = ['total', 'call', 'delta']
FMT_HEADER = "TOTAL__ CALL___ DELTA__"
TIMING = {} # {func => size => interpreter => tme => [rep]}
def start_twinterpeter():
"""Initialize and start a twinterpeter"""
print("starting twinterpeter")
twinterpreter = TwinMaster('pypy')
twinterpreter.start()
time.sleep(1)
return twinterpreter
def time_callable(twinterpreter, func, scale):
"""Measure execution time natively and in twinterpeter"""
master_result = example_module.time_call(
example_module.time_call,
func,
scale
)
twin_result = example_module.time_call(
twinterpreter.execute,
example_module.time_call,
func,
scale
)
return master_result, twin_result
def store_results(master_result, twin_result, scale, func_name):
"""Store results of execution time measurement"""
if scale not in TIMING[func_name]:
TIMING[func_name][scale] = {}
for interpreter in ('master', 'twin'):
TIMING[func_name][scale][interpreter] = {}
for header in TME_HEADER:
TIMING[func_name][scale][interpreter][header] = []
tme_result = get_time(master_result)
for idx, header in enumerate(TME_HEADER):
TIMING[func_name][scale]['master'][header].append(tme_result[idx])
tme_result = get_time(twin_result)
for idx, header in enumerate(TME_HEADER):
TIMING[func_name][scale]['twin'][header].append(tme_result[idx])
def print_results(master_result, twin_result, reps, power, func_name):
"""Print the current timing results"""
print("\r" + ' ' * 120, end='')
print("\r", func_name, '(%03d/%03d @ %02d**%02d)' % (
reps, OPTIONS.repetitions, OPTIONS.base, power), end='')
print("norm", fmt_time(master_result), end='')
print("twin", fmt_time(twin_result), end='')
def dump_json():
"""Write results as json"""
if OPTIONS.json is not None:
json_fmt = {'callable_name': '_'.join(TIMING)}
json_path = OPTIONS.json % json_fmt
print("Writing benchmark to", json_path)
with open(json_path, "w") as json_file:
json.dump(TIMING, json_file)
def main():
twinterpreter = start_twinterpeter()
callables = (get_callable(OPTIONS.callable),)
try:
for rep in range(OPTIONS.repetitions):
for func in callables:
TIMING.setdefault(func.__name__, {})
for power in range(OPTIONS.power):
scale = 1 * pow(OPTIONS.base, power)
master_result, twin_result = time_callable(twinterpreter, func, scale)
print_results(master_result, twin_result, rep, power, func.__name__)
store_results(master_result, twin_result, scale, func.__name__)
except KeyboardInterrupt:
if not TIMING:
raise
print("... KeyboardInterrupt")
else:
print("...")
print("benchmarking done")
# json
dump_json()
if plt is None:
print("No MPL, exiting")
return
# plotting
_, axes = plt.subplots(
nrows=len(TIMING) * 3,
ncols=len(TME_HEADER),
figsize=(8, 6),
gridspec_kw=dict(wspace=0.3, hspace=0.3)
)
for ridx, func_name in enumerate(TIMING):
for cidx, tme_head in enumerate(TME_HEADER):
# per call, sliced by power
# absolute
this_axes = axes[ridx * 3][cidx]
max_scale_pow = math.log(max(TIMING[func_name]), 10) / 255.0
this_axes.set_title('%s %s (slice)' % (func_name, tme_head))
this_axes.set_yscale(value='log')
this_axes.axhline(y=0.000001, linestyle='--') # clock granularity
for scale in TIMING[func_name]:
this_axes.plot(
TIMING[func_name][scale]['master'][tme_head],
color="#FF00%02X" % (math.log(scale, 10) / max_scale_pow),
)
this_axes.plot(
TIMING[func_name][scale]['twin'][tme_head],
color="#00FF%02X" % (math.log(scale, 10) / max_scale_pow),
)
# per power
# absolute
this_axes = axes[ridx * 3 + 1][cidx]
this_axes.set_title('%s %s (min/max/avg)' % (func_name, tme_head))
this_axes.set_xscale(value='log')
this_axes.set_yscale(value='log')
this_axes.axhline(y=0.000001, linestyle='--') # clock granularity
x_all = sorted(TIMING[func_name])
y_master = [
sum(TIMING[func_name][scale]['master'][tme_head]) / len(TIMING[func_name][scale]['master'][tme_head])
for scale in x_all
]
y_master_min = [
min(TIMING[func_name][scale]['master'][tme_head])
for scale in x_all
]
y_master_max = [
max(TIMING[func_name][scale]['master'][tme_head])
for scale in x_all
]
y_twin = [
sum(TIMING[func_name][scale]['twin'][tme_head]) / len(TIMING[func_name][scale]['twin'][tme_head])
for scale in x_all
]
y_twin_min = [
min(TIMING[func_name][scale]['twin'][tme_head])
for scale in x_all
]
y_twin_max = [
max(TIMING[func_name][scale]['twin'][tme_head])
for scale in x_all
]
# min/max
this_axes.fill_between(
x=sorted(TIMING[func_name]),
y1=y_master_min,
y2=y_master_max,
color="#FF0000",
alpha=0.2,
)
this_axes.fill_between(
x=sorted(TIMING[func_name]),
y1=y_twin_min,
y2=y_twin_max,
color="#00FF00",
alpha=0.2,
)
# avg
this_axes.errorbar(
x=sorted(TIMING[func_name]),
y=y_master,
color="#FF0000",
)
this_axes.errorbar(
x=sorted(TIMING[func_name]),
y=y_twin,
color="#00FF00",
)
# relative
this_axes = axes[ridx * 3 + 2][cidx]
this_axes.set_title('%s %s (relative)' % (func_name, tme_head))
this_axes.axhline(y=1, linestyle='--')
this_axes.set_xscale(value='log')
this_axes.set_yscale(value='log')
ratios = [
(y_twin[tidx] / y_master[tidx], x_all[tidx])
for tidx
in range(len(x_all))
if y_master[tidx] != 0
]
x_ratio_min_max = [
tidx
for tidx
in range(len(x_all))
if y_master_min[tidx] != 0 and y_master_max[tidx] != 0
]
ratios_min = [
y_twin_min[tidx] / y_master_min[tidx]
for tidx
in x_ratio_min_max
]
ratios_max = [
y_twin_max[tidx] / y_master_max[tidx]
for tidx
in x_ratio_min_max
]
this_axes.fill_between(
x=[x_all[t_idx] for t_idx in x_ratio_min_max],
y1=ratios_min,
y2=ratios_max,
color="#FFFF00",
alpha=0.2,
)
this_axes.errorbar(
x=[ratio[1] for ratio in ratios],
y=[ratio[0] for ratio in ratios],
color="#FFFF00",
)
plt.show()
if __name__ == "__main__":
main()