-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathclassify.py
271 lines (217 loc) · 9.19 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# encoding: utf-8
import shelve
import numpy as np
import cPickle as pickle
from sklearn.externals import joblib
import sys
from fast_utils import ftrim as trim
from utils import normalize, local_file
from transitions import transition_features
from feature_extraction import extract_features
import logging
import datetime
import os
from numpy import uint8
from sklearn import svm
from sklearn.linear_model import LogisticRegression
from sklearn.utils import shuffle
from cv2 import GaussianBlur
from sobel_features import sobel_features
import glob
TIMEFORMAT = '%Y%m%d%H%M%S'
allchars = shelve.open(local_file('allchars_dict2'))
label_chars = allchars['label_chars']
chars_label = allchars['allchars']
label_chars = allchars['label_chars']
PCA_PICKLE = 'pca.pkl'
allchars.close()
class TrainingData(object):
def __init__(self, scaled=False, normed=False):
self.scaler = None
self.normalizer = None
self.scaled = scaled
self.normed = normed
print 'loading training data'
def get_scaler(self, x_train):
from sklearn.preprocessing import StandardScaler
return StandardScaler().fit(x_train)
def get_normalizer(self, x_train):
from sklearn.preprocessing import Normalizer
return Normalizer().fit(self.x_train)
def get_scaled_x(self):
scaler = self.get_scaler(self.x_train.astype(np.float64))
self.x_train = scaler.transform(self.x_train.astype(np.float64))
return self.x_train
def get_normed_x(self):
normalizer = self.get_normalizer(self.x_train)
self.x_train = normalizer.transform(self.x_train)
return self.x_train
def transform_dataset(self):
'''Transform raw pixel data to a feature matrix
Returns:
x_train: the transformed array
'''
x_train = []
for arr in self.x_train:
x_train.append(extract_features(arr.reshape((32,32)).astype(uint8), scale=False))
self.scaler = self.get_scaler(x_train)
#TODO: change name of saved data since it is more than just zernike transforms
joblib.dump(self.scaler, 'zernike_scaler-latest')
x_train = self.scaler.transform(x_train)
joblib.dump(x_train, 'zernike_x_train')
return x_train
def get_gradient_x(self):
print 'creating sobel features'
self.x_train = self.x_train.astype(np.double)
x_train = [sobel_features(GaussianBlur(x.reshape((32,32)), ksize=(5,5), \
sigmaX=1), magnitude, direction, sx, sy, x2) \
for x in self.x_train]
print 'got features'
return x_train
def patch_features(self):
rg = range(0,33, 4)
km = pickle.load(open('patch_km.pkl', 'rb'))
# import Image
chars = []
for p, x in enumerate(self.x_train):
x = x.reshape((32,32)).astype(np.uint8)
blocks = []
for i, r in enumerate(rg[:-1]):
rows = x[r:rg[i+1]]
for k, c in enumerate(rg[:-1]):
col = rows[:, c:rg[k+1]]
col = col.flatten()
blocks.append(km.predict(col))
chars.append(blocks)
print blocks
return np.array(chars)
def save_data_imgs(self, stack):
'''Selectively convert data row to image and save to disk for
review purposes'''
from PIL import Image
label = chars_label[stack]
for k, tt in enumerate(self.training):
if tt[0] == label:
x = tt[1:].astype(np.uint8).reshape((32,32))*255
Image.fromarray(x).convert('L').save('/tmp/%d.tiff' % k)
def exp_data(self, core_smp_file = None):
'''Load and organize primary datasets'''
def unique_rows(a):
unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1]))
return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1]))
def load_pkl_data(pklfile):
return pickle.load(open(pklfile, 'rb'))
if not core_smp_file:
raise ValueError, 'Must specify a data sample file'
training = np.genfromtxt(core_smp_file, np.uint32, delimiter=',')
training_tibchars = np.genfromtxt('datasets/tibcharsamples.txt', np.uint32, delimiter=',')
training5 = np.genfromtxt('datasets/ui_samples.csv', np.uint32, delimiter=',')
#########Training sets with degraded samples
# training5 = np.genfromtxt('/home/zr/home2/letters/phrinyik_labeled_samples_from_ui.csv', np.uint32, delimiter=',')
##########
training_alt = np.load('datasets/normalized_3216_to_3232_training.npy')
for pklfile in glob.glob('datasets/*pkl'):
lpk = load_pkl_data(pklfile)
print np.array(lpk).shape, pklfile
training = np.append(training, load_pkl_data(pklfile), axis=0)
training = np.append(training, training_tibchars, axis=0)
training = np.append(training, training_alt, axis=0)
training = np.append(training, training5, axis=0)
symbols = np.genfromtxt('datasets/symbols.txt', np.uint32, delimiter=',')
training = np.append(training, symbols, axis=0)
####include testing sets in training
# import glob
# testing_sets = glob.glob('testing_sets/*csv')
# for t in testing_sets:
# np.append(training, np.genfromtxt(t, np.uint32, delimiter=','))
######################
training = unique_rows(training)
self.training = training
self.y_train = training[:,0]
self.x_train = training[:,1:]
joblib.dump(self.y_train, 'exp_data_y')
joblib.dump(self.x_train, 'raw_x_data')
print 'done building training set'
def write_libsvm_file(sample_array, flname, mode='w'):
'''Convert a sample data ndarray to libsvm formate'''
print 'writing libsvm file'
outfile = open(flname, mode=mode)
for row in sample_array:
r = [str(row[0])]
for i, val in enumerate(row[1:]):
r.append(str(i+1)+ ':' + str(val))
row = ' '.join(r)
outfile.write(row)
outfile.write('\n')
def rebuild_cls(pca_trans=False, rbf=True, logistic=True,
tuning_par=None, load_saved=False, pca_components=None):
'''Build (or rebuild) a classifier with all the data
Args:
pca_trans: bool --> perform pca transformation on extracted features
rbf: bool --> (re)build the rbf model
logistic: bool --> (re)buuild the logistic regression model
load_solved: bool --> load data that has already undergone feature
extraction from disk
Returns:
None (the new classifiers are saved to disk)
'''
if load_saved:
y_train = joblib.load('exp_data_y')
x_train = joblib.load('zernike_x_train')
y_train.shape = (y_train.shape[0], 1)
print x_train.shape
print y_train.shape
y_train,x_train = shuffle(y_train,x_train)
else:
data = TrainingData()
data.exp_data(core_smp_file='datasets/font-draw-samples.txt')
y_train = data.y_train
x_train = data.transform_dataset()
y_train,x_train = shuffle(y_train,x_train)
data.x_train = data.x_train.astype(np.uint8)
data.x_train.tofile('x_train_data')
if pca_trans:
print 'pca transformation...',
from sklearn.decomposition import PCA
if pca_components:
pca = PCA(n_components=pca_components)
else:
pca = PCA()
x_train = pca.fit_transform(x_train, y_train)
print x_train.shape, 'is the new dimensionality'
print 'transforming...'
pickle.dump(pca, open(PCA_PICKLE,'wb'))
if rbf:
clstype = 'rbf'
print 'Training rbf. This will take a while'
cls = svm.SVC(kernel=clstype, C=20, gamma=0.001,
cache_size=100000., probability=False) #<----
# cls = svm.SVC(kernel=clstype, C=20, gamma=0.001, cache_size=100000., probability=True)
print 'fitting the classifier'
cls.fit(x_train, y_train)
print 'saving %s to disk' % clstype
joblib.dump(cls, 'rbf-cls')
if logistic:
cls = LogisticRegression(C=1000, intercept_scaling=100)
print 'Training the logistic regression classifier. This may take a while.'
print 'fitting the classifier'
cls.fit(x_train, y_train)
print 'saving logistic regression cls to disk'
joblib.dump(cls, 'logistic-cls')
def load_cls(name):
return joblib.load(local_file(name))
def predict(x, cls=None):
'''Predict a single sample point'''
predicted = cls.predict(x)[0]
print label_chars[int(predicted)]
def predictprob(x, cls):
'''Predict probability of a single sample point'''
probs = cls.predict_proba(x)[0]
predicted = np.argmax(probs)
prob = probs[predicted]
char = label_chars[int(predicted)]
return char, prob
if __name__ == '__main__':
cls = rebuild_cls(pca_trans=False)
from accuracy_test import test_all
acc = test_all(clsf=cls)