-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathstump_ensemble.py
341 lines (288 loc) · 16.4 KB
/
stump_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import numpy as np
from numba import jit
from collections import OrderedDict
from robust_boosting import exp_loss_robust, dtype, fit_plain_stumps, fit_robust_bound_stumps, fit_robust_exact_stumps
from utils import minimum, get_contiguous_indices, get_n_proc
from concurrent.futures import ThreadPoolExecutor
class Stump:
def __init__(self, w_l, w_r, b, coord, loss):
# `loss` is the loss of the whole ensemble after applying this stump
self.w_l, self.w_r, self.b, self.coord, self.loss = w_l, w_r, b, coord, loss
self.left, self.right = None, None
def predict(self, X):
value = self.w_l + self.w_r * (X[:, self.coord] >= self.b)
return value
def find_min_yf(self, X, y, eps):
split_lbs, split_ubs = X[:, self.coord] - eps, X[:, self.coord] + eps
lval, rval = self.w_l, self.w_r + self.w_l
# Fast vectorized version
guaranteed_left = split_ubs < self.b
guaranteed_right = split_lbs > self.b
uncertain = (split_lbs <= self.b) * (split_ubs >= self.b)
lbs = y*lval * guaranteed_left + y*rval * guaranteed_right + np.minimum(y*lval, y*rval) * uncertain
return lbs
def __repr__(self):
lval, rval, threshold = self.w_l, self.w_r + self.w_l, self.b
return 'Tree: if x[{}] < {:.4f}: {:.4f} else {:.4f}'.format(self.coord, threshold, lval, rval)
def get_json_dict(self, counter_terminal_nodes):
"""
counter_terminal_nodes: not used here
"""
precision = 5
children_list = [{'nodeid': 1, 'leaf': round(self.w_l, precision)},
{'nodeid': 2, 'leaf': round(self.w_l + self.w_r, precision)}]
stump_dict = {'nodeid': 0, 'split': 'f' + str(int(self.coord)), 'split_condition': round(self.b, precision),
'yes': 1, 'no': 2, 'children': children_list}
return stump_dict, counter_terminal_nodes
class StumpEnsemble:
def __init__(self, weak_learner, n_trials_coord, lr, idx_clsf, n_bins=-1, max_weight=1.0):
self.weak_learner = weak_learner
self.n_trials_coord = n_trials_coord
self.lr = lr
self.idx_clsf = idx_clsf
self.n_bins = n_bins
self.max_weight = max_weight
self.trees = []
self.coords_trees = OrderedDict()
def __repr__(self):
sorted_trees = sorted(self.trees, key=lambda tree: tree.coord)
return '\n'.join([str(t) for t in sorted_trees])
def copy(self):
ensemble_new = StumpEnsemble(self.weak_learner, self.n_trials_coord, self.lr, self.idx_clsf, self.n_bins,
self.max_weight)
for tree in self.trees:
ensemble_new.add_weak_learner(tree, apply_lr=False)
return ensemble_new
def load(self, ensemble_arr, iteration=-1):
if iteration != -1: # take up to some iteration
ensemble_arr = ensemble_arr[:iteration+1]
for i in range(ensemble_arr.shape[0]):
w_l, w_r, b, coord, loss = ensemble_arr[i, :]
coord = int(coord)
tree = Stump(w_l, w_r, b, coord, loss)
# the values of w_l and w_r should be already scaled by lr, would be wrong to do this again
self.add_weak_learner(tree, apply_lr=False)
def export_model(self):
ensemble_arr = np.zeros([len(self.trees), 5])
for i, tree in enumerate(self.trees):
ensemble_arr[i, :] = [tree.w_l, tree.w_r, tree.b, tree.coord, tree.loss]
return ensemble_arr
def save(self, path):
if path != '':
np.save(path, self.export_model(), allow_pickle=False)
def add_weak_learner(self, tree, apply_lr=True):
if apply_lr:
tree.w_l, tree.w_r = tree.w_l*self.lr, tree.w_r*self.lr
self.trees.append(tree)
if tree.coord not in self.coords_trees:
self.coords_trees[tree.coord] = []
self.coords_trees[tree.coord].append(tree)
def add_empty_weak_learner(self):
empty_stump = Stump(0.0, 0.0, 0.0, 0, 0.0)
self.add_weak_learner(empty_stump)
def predict(self, X):
Fx = np.zeros(X.shape[0])
for tree in self.trees:
Fx += tree.predict(X)
return Fx
def attack_by_sampling(self, X, y, eps, n_trials):
""" A simple attack just by sampling in the Linf-box around the points. More of a sanity check. """
num, dim = X.shape
f_x_vals = np.zeros((num, n_trials))
# Note: for efficiency, we sample the same random direction for all points
deltas = np.random.uniform(-eps, eps, size=(dim, n_trials))
for i in range(n_trials-1):
# let's keep them as real images, although not strictly needed
perturbed_pts = np.clip(X + deltas[:, i], 0.0, 1.0)
f_x_vals[:, i] = self.predict(perturbed_pts)
# maybe in some corner cases, the predictions at the original point is more worst-case than the sampled points
f_x_vals[:, n_trials-1] = self.predict(X)
f_x_min = np.min(y[:, None] * f_x_vals, axis=1)
return f_x_min
def certify_treewise(self, X, y, eps):
lb_ensemble = np.zeros(X.shape[0])
# The naive tree-wise bounded on the merged trees
for tree in self.trees:
lb_ensemble += tree.find_min_yf(X, y, eps)
return lb_ensemble
@staticmethod
@jit(nopython=True)
def find_min_coord_diff(X_proj, y, thresholds, w_r_values, eps):
# parallel=True doesn't help here; not sure if jit here is helpful at all. maybe if there are many thresholds
num = X_proj.shape[0]
idx = np.argsort(thresholds)
sorted_thresholds = thresholds[idx]
sorted_w_r = w_r_values[idx]
f_x_min_coord_diff, f_x_cumsum = np.zeros(num), np.zeros(num)
for i_t in range(len(sorted_thresholds)):
# consider the threshold if it belongs to (x-eps, x+eps] (x-eps is excluded since already evaluated)
idx_x_eps_close_to_threshold = (X_proj - eps < sorted_thresholds[i_t]) * (sorted_thresholds[i_t] <= X_proj + eps)
f_diff = y * sorted_w_r[i_t] * idx_x_eps_close_to_threshold
f_x_cumsum += f_diff
f_x_min_coord_diff = minimum(f_x_cumsum, f_x_min_coord_diff)
return f_x_min_coord_diff
def certify_exact(self, X, y, eps, coords_to_ignore=()):
# Idea: iterate over all thresholds, and then check if they are in (x-eps, x+eps]
num, dim = X.shape
f_x_min = np.zeros(num)
# Fast, vectorized version
for coord in self.coords_trees.keys():
if coord in coords_to_ignore:
continue
trees_current_coord = self.coords_trees[coord]
f_x_min_coord_base = np.zeros(num)
thresholds, w_r_values = np.zeros(len(trees_current_coord)), np.zeros(len(trees_current_coord))
for i in range(len(trees_current_coord)):
tree = trees_current_coord[i]
f_x_min_coord_base += y * tree.predict(X - eps)
thresholds[i], w_r_values[i] = tree.b, tree.w_r
# merge trees with the same thresholds to prevent an overestimation (lower bounding) of the true minimum
thresholds_list, w_r_values_list = [], []
for threshold in np.unique(thresholds):
thresholds_list.append(threshold)
w_r_values_list.append(np.sum(w_r_values[thresholds == threshold]))
thresholds, w_r_values = np.array(thresholds_list), np.array(w_r_values_list)
f_x_min += f_x_min_coord_base + self.find_min_coord_diff(X[:, coord], y, thresholds, w_r_values, eps)
return f_x_min
def fit_stumps_over_coords(self, X, y, gamma, model, eps):
verbose = False
parallel = False # can speed up the training on large datasets
n_ex = X.shape[0]
X, y, gamma = X.astype(dtype), y.astype(dtype), gamma.astype(dtype)
prev_loss = np.mean(gamma)
# 151 features are always 0.0 on MNIST 2 vs 6. And this number is even higher for smaller subsets of MNIST,
# i.e. subsets of examples partitioned by tree splits.
idx_non_trivial = np.abs(X).sum(axis=0) > 0.0
features_to_check = np.random.permutation(np.where(idx_non_trivial)[0])[:self.n_trials_coord]
n_coords = len(features_to_check)
params, min_losses = np.zeros((n_coords, 4)), np.full(n_coords, np.inf)
if parallel:
n_proc = get_n_proc(n_ex)
n_proc = min(n_coords, min(100, n_proc))
batch_size = n_coords // n_proc
n_batches = n_coords // batch_size + 1
with ThreadPoolExecutor(max_workers=n_proc) as executor:
procs = []
for i_batch in range(n_batches):
coords = features_to_check[i_batch*batch_size:(i_batch+1)*batch_size]
args = (X, X[:, coords], y, gamma, model, eps, coords)
procs.append(executor.submit(self.fit_stump_batch, *args))
# Process the results
i_coord = 0
for i_batch in range(n_batches):
res_many = procs[i_batch].result()
for res in res_many:
min_losses[i_coord], *params[i_coord, :] = res
i_coord += 1
else:
for i_coord, coord in enumerate(features_to_check):
min_losses[i_coord], *params[i_coord, :] = self.fit_stump(
X, X[:, coord], y, gamma, model, eps, coord)
id_best_coord = min_losses.argmin()
min_loss = min_losses[id_best_coord]
best_coord = int(params[id_best_coord][3]) # float to int is necessary for a coordinate
best_wl, best_wr, best_b = params[id_best_coord][0], params[id_best_coord][1], np.float32(params[id_best_coord][2])
if verbose:
print('[{}-vs-all]: n_ex {}, n_coords {} -- loss {:.5f}->{:.5f}, b={:.3f} wl={:.3f} wr={:.3f} at coord {}'.format(
self.idx_clsf, n_ex, n_coords, prev_loss, min_loss, best_b, best_wl, best_wr, best_coord))
return Stump(best_wl, best_wr, best_b, best_coord, min_loss)
def fit_stump_batch(self, X, Xs, y, gamma, model, eps, coords):
res = np.zeros([len(coords), 5])
for i, coord in enumerate(coords):
res[i] = self.fit_stump(X, Xs[:, i], y, gamma, model, eps, coord)
return res
def fit_stump(self, X, X_proj, y, gamma_global, model, eps, coord):
min_prec_val = 1e-7
min_val, max_val = 0.0, 1.0 # can be changed if the features are in a different range
n_bins = self.n_bins
# Needed for exact robust optimization with stumps
trees_current_coord = self.coords_trees[coord] if coord in self.coords_trees else []
w_rs, bs = np.zeros(len(trees_current_coord)), np.zeros(len(trees_current_coord))
for i in range(len(trees_current_coord)):
w_rs[i] = trees_current_coord[i].w_r
bs[i] = trees_current_coord[i].b
if model == 'robust_exact' and trees_current_coord != []: # note: the previous gamma is just ignored
min_Fx_y_exact_without_j = self.certify_exact(X, y, eps, coords_to_ignore=(coord, ))
w_ls = np.sum([tree.w_l for tree in trees_current_coord])
gamma = np.exp(-min_Fx_y_exact_without_j - y*w_ls)
else:
gamma = gamma_global
if n_bins > 0:
if model == 'robust_bound':
# b_vals = np.array([0.31, 0.41, 0.5, 0.59, 0.69]) # that's the thresholds that one gets with n_bins=10
b_vals = np.arange(eps * n_bins, n_bins - eps * n_bins + 1) / n_bins
# to have some margin to make the thresholds not adversarially reachable from 0 or 1
b_vals[b_vals < 0.5] += 0.1 * 1 / n_bins
b_vals[b_vals > 0.5] -= 0.1 * 1 / n_bins
else:
b_vals = np.arange(1, n_bins) / n_bins
else:
threshold_candidates = np.sort(X_proj)
if len(threshold_candidates) == 0: # if no samples left according to min_samples_leaf
return [np.inf, 0.0, 0.0, 0.0, -1]
if model not in ['robust_bound', 'robust_exact'] or eps == 0.0: # plain, da_uniform or at_cube training
b_vals = np.copy(threshold_candidates)
b_vals += min_prec_val # to break the ties
else: # robust training
b_vals = np.concatenate((threshold_candidates - eps, threshold_candidates + eps), axis=0)
b_vals = np.clip(b_vals, min_val, max_val) # save computations (often goes 512 -> 360 thresholds on MNIST)
# to make in the overlapping case [---x-[--]-x---] output 2 different losses in the middle
n_bs = len(threshold_candidates)
b_vals += np.concatenate((-np.full(n_bs, min_prec_val), np.full(n_bs, min_prec_val)), axis=0)
b_vals = np.unique(b_vals) # use only unique b's
b_vals = np.sort(b_vals) # still important to sort because of the final threshold selection
if model in ['plain', 'da_uniform', 'at_cube']:
losses, w_l_vals, w_r_vals, b_vals = fit_plain_stumps(X_proj, y, gamma, b_vals, self.max_weight)
elif model == 'robust_bound':
losses, w_l_vals, w_r_vals, b_vals = fit_robust_bound_stumps(X_proj, y, gamma, b_vals, eps, self.max_weight)
elif model == 'robust_exact':
losses, w_l_vals, w_r_vals, b_vals = fit_robust_exact_stumps(X_proj, y, gamma, b_vals, eps, w_rs, bs, self.max_weight)
else:
raise ValueError('wrong model')
min_loss = np.min(losses)
# probably, they are already sorted, but to be 100% sure since it is not explicitly mentioned in the docs
indices_opt_init = np.sort(np.where(losses == min_loss)[0])
indices_opt = get_contiguous_indices(indices_opt_init)
id_opt = indices_opt[len(indices_opt) // 2]
idx_prev = np.clip(indices_opt[0]-1, 0, len(b_vals)-1) # to prevent stepping out of the array
idx_next = np.clip(indices_opt[-1]+1, 0, len(b_vals)-1) # to prevent stepping out of the array
b_prev, w_l_prev, w_r_prev = b_vals[idx_prev], w_l_vals[idx_prev], w_r_vals[idx_prev]
b_next, w_l_next, w_r_next = b_vals[idx_next], w_l_vals[idx_next], w_r_vals[idx_next]
# initialization
b_leftmost, b_rightmost = b_vals[indices_opt[0]], b_vals[indices_opt[-1]]
# more involved, since with +-eps, an additional check of the loss is needed
if model in ['plain', 'da_uniform', 'at_cube']:
b_rightmost = b_next
elif model in ['robust_bound', 'robust_exact']:
h_flag = False if model == 'robust_bound' else True
b_prev_half = (b_prev + b_vals[indices_opt[0]]) / 2
loss_prev_half = exp_loss_robust(X_proj, y, gamma, w_l_prev, w_r_prev, w_rs, bs, b_prev_half, eps, h_flag)
b_next_half = (b_vals[indices_opt[-1]] + b_next) / 2
loss_next_half = exp_loss_robust(X_proj, y, gamma, w_l_next, w_r_next, w_rs, bs, b_next_half, eps, h_flag)
# we extend the interval of the constant loss to the left and to the right if there the loss is
# the same at b_prev_half or b_next_half
if loss_prev_half == losses[id_opt]:
b_leftmost = b_prev
if loss_next_half == losses[id_opt]:
b_rightmost = b_next
else:
raise ValueError('wrong model')
# we put in the middle of the interval of the constant loss
b_opt = (b_leftmost + b_rightmost) / 2
# For the chosen threshold, we need to calculate w_l, w_r
# Some of w_l, w_r that correspond to min_loss may not be optimal anymore
b_val_final = np.array([b_opt])
if model in ['plain', 'da_uniform', 'at_cube']:
loss, w_l_opt, w_r_opt, _ = fit_plain_stumps(X_proj, y, gamma, b_val_final, self.max_weight)
elif model == 'robust_bound':
loss, w_l_opt, w_r_opt, _ = fit_robust_bound_stumps(X_proj, y, gamma, b_val_final, eps, self.max_weight)
elif model == 'robust_exact':
loss, w_l_opt, w_r_opt, _ = fit_robust_exact_stumps(X_proj, y, gamma, b_val_final, eps, w_rs, bs, self.max_weight)
else:
raise ValueError('wrong model')
loss, w_l_opt, w_r_opt = loss[0], w_l_opt[0], w_r_opt[0]
# recalculation of w_l, w_r shouldn't change the min loss
if np.abs(loss - min_loss) > 1e7:
print('New loss: {:.5f}, min loss before: {:.5f}'.format(loss, min_loss))
best_loss = losses[id_opt]
return [best_loss, w_l_opt, w_r_opt, b_opt, coord]