-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstars.py
executable file
·143 lines (117 loc) · 4.87 KB
/
stars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/python
# Copyright (c) 2015 Matthew Earl
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
# NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
# USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
Routine for extracting stars from an input image.
"""
__all__ = (
'extract',
'ExtractFailed',
'Star',
)
import collections
import math
import cv2
import numpy
# Input images will be thresholded to `k + THRESHOLD_BIAS`, where `k` is the
# lowest threshold level such that `image_size * THRESHOLD_FRACTION` is more
# than the number of white pixels in the thresholded image.
THRESHOLD_FRACTION = 0.025
THRESHOLD_BIAS = 2
# Thresholded input images are dilated by this amount.
DILATION_SIZE = 9
# Minimum and maximum number of stars allowed in an input image.
MIN_STARS = 8
MAX_STARS = 50
class Star(collections.namedtuple('_StarBase', ('x', 'y'))):
def dist(self, other):
return math.sqrt((self.x - other.x) ** 2 +
(self.y - other.y) ** 2)
@property
def pos(self):
return self.x, self.y
@property
def pos_vec(self):
return numpy.matrix([[self.x, self.y]]).T
class ExtractFailed(Exception):
pass
def extract(im):
"""
Return an iterable of star coordinates, given an input image.
Arguments:
im: Image to extract star information from. 2-dimensional input array
of uint8 values.
Return:
An iterable of Star objects, corresponding with star positions in the
input image.
"""
# Threshold the image to a level which shows a good number of stars.
hist = numpy.histogram(im, bins=range(256))[0]
for thr in range(256):
if sum(hist[thr + 1:]) < (im.shape[0] * im.shape[1] *
THRESHOLD_FRACTION):
break
else:
raise ExtractFailed("Image too bright")
thr += THRESHOLD_BIAS
_, thresh_im = cv2.threshold(im, thr, 255, cv2.THRESH_BINARY)
# Dilate the thresholded image so that multiple regions from the same
# source are combined.
thresh_im = cv2.dilate(thresh_im, numpy.ones((DILATION_SIZE,
DILATION_SIZE)))
# Detect contiguous white regions using findContours. Filter out single
# pixel regions, as they are likely to be noise. The idea here is that each
# region should correspond with a star.
contours, _ = cv2.findContours(thresh_im, mode=cv2.RETR_EXTERNAL,
method=cv2.CHAIN_APPROX_NONE)
contours = [c for c in contours if len(c) > 1]
if len(contours) > MAX_STARS:
raise ExtractFailed("Too many stars ({})".format(len(contours)))
if len(contours) < MIN_STARS:
raise ExtractFailed("Not enough stars ({})".format(len(contours)))
# For each contiguous white region (contour) in the image, yield its
# coordinates. It's coordinates are based on the centre-of-mass of the
# relevant region.
#
# To calculate this, the input image is masked by the region and the
# image moments of the result are computed.
#
# For efficiency, the masking is only applied to a bounding rectangle
# of the contour.
for idx, contour in enumerate(contours):
x, y, w, h = cv2.boundingRect(contour)
sub_im_mask = numpy.zeros((h, w), dtype=numpy.uint8)
cv2.drawContours(sub_im_mask,
contours,
idx,
color=1,
thickness=-1,
offset=(-x, -y))
sub_im = im[y:y + h, x:x + w] * sub_im_mask
m = cv2.moments(sub_im)
yield Star(x=(x + m['m10'] / m['m00']), y=(y + m['m01'] / m['m00']))
if __name__ == "__main__":
import sys
im = cv2.imread(sys.argv[1], cv2.IMREAD_GRAYSCALE)
for s in extract(im):
print "{}".format(s)
cv2.circle(im, tuple(map(int, s.pos)), radius=5, color=255)
if len(sys.argv) > 2:
cv2.imwrite(sys.argv[2], im * 8.0)