forked from BRAINSia/BRAINSStandAlone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWorkupT1T2.py
1156 lines (1034 loc) · 91.1 KB
/
WorkupT1T2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
#################################################################################
## Program: BRAINS (Brain Research: Analysis of Images, Networks, and Systems)
## Language: Python
##
## Author: Hans J. Johnson
##
## This software is distributed WITHOUT ANY WARRANTY; without even
## the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the above copyright notices for more information.
##
#################################################################################
import os
import csv
import sys
import string
from nipype.interfaces.base import CommandLine, CommandLineInputSpec, TraitedSpec, File, Directory
from nipype.interfaces.base import traits, isdefined, BaseInterface
from nipype.interfaces.utility import Merge, Split, Function, Rename, IdentityInterface
import nipype.interfaces.io as nio # Data i/o
import nipype.pipeline.engine as pe # pypeline engine
from nipype.interfaces.freesurfer import ReconAll
from nipype.utils.misc import package_check
# package_check('nipype', '5.4', 'tutorial1') ## HACK: Check nipype version
package_check('numpy', '1.3', 'tutorial1')
package_check('scipy', '0.7', 'tutorial1')
package_check('networkx', '1.0', 'tutorial1')
package_check('IPython', '0.10', 'tutorial1')
from SEMTools import *
from WorkupT1T2AtlasNode import MakeAtlasNode
from PipeLineFunctionHelpers import mkdir_p
from PipeLineFunctionHelpers import getListIndex
from PipeLineFunctionHelpers import POSTERIORS
from PipeLineFunctionHelpers import UnwrapPosteriorImagesFromDictionaryFunction
from PipeLineFunctionHelpers import FixWMPartitioning
from PipeLineFunctionHelpers import AccumulateLikeTissuePosteriors
from WorkupT1T2FreeSurfer_custom import (CreateFreeSurferWorkflow_custom,
CreateFreeSurferSubjectTemplate,
CreateFreeSurferLongitudinalWorkflow)
# HACK: [('buildTemplateIteration2', 'SUBJECT_TEMPLATES/0249/buildTemplateIteration2')]
def GenerateSubjectOutputPattern(subjectid):
""" This function generates output path substitutions for workflows and nodes that conform to a common standard.
HACK: [('ANTSTemplate/Iteration02_Reshaped.nii.gz', 'SUBJECT_TEMPLATES/0668/T1_RESHAPED.nii.gz'),
('ANTSTemplate/_ReshapeAveragePassiveImageWithShapeUpdate[0-9]*', 'SUBJECT_TEMPLATES/0668')]
subs=r'test/\g<project>/\g<subject>/\g<session>'
pe.sub(subs,test)
pat=r'foo/_uid_(?P<project>PHD_[0-9][0-9][0-9])_(?P<subject>[0-9][0-9][0-9][0-9])_(?P<session>[0-9][0-9][0-9][0-9][0-9])'
pe=re.compile(pat)
pe.sub(subs,test)
test
test='foo/_uid_PHD_024_0003_12345'
pe.sub(subs,test)
pat=r'(?P<modulename>[^/]*)/_uid_(?P<project>PHD_[0-9][0-9][0-9])_(?P<subject>[0-9][0-9][0-9][0-9])_(?P<session>[0-9][0-9][0-9][0-9][0-9])'
subs=r'test/\g<project>/\g<subject>/\g<session>/\g<modulename>'
pe.sub(subs,test)
pe=re.compile(pat)
pe.sub(subs,test)
/nfsscratch/PREDICT/johnsonhj/ExpandedExperiment/20120801.SubjectOrganized_Results/ANTSTemplate/CLIPPED_AVG_CSFWARP_AVG_CSF.nii.gz
-> /nfsscratch/PREDICT/johnsonhj/ExpandedExperiment/20120801.SubjectOrganized_Results/SUBJECT_TEMPLATES/2013/AVG_CSF.nii.gz
"""
patternList = []
find_pat = os.path.join('ANTSTemplate', 'ReshapeAverageImageWithShapeUpdate.nii.gz')
replace_pat = os.path.join('SUBJECT_TEMPLATES', subjectid, r'AVG_T1.nii.gz')
patternList.append((find_pat, replace_pat))
# find_pat=os.path.join('ANTSTemplate',r'_ReshapeAveragePassiveImageWithShapeUpdate[0-9]*/AVG_[A-Z0-9]*WARP_(?P<structure>AVG_[A-Z0-9]*.nii.gz)')
find_pat = os.path.join('ANTSTemplate', r'_ReshapeAveragePassiveImageWithShapeUpdate[0-9]*/AVG_(?P<structure>.*.nii.gz)')
replace_pat = os.path.join('SUBJECT_TEMPLATES', subjectid, r'AVG_\g<structure>')
patternList.append((find_pat, replace_pat))
find_pat = os.path.join('ANTSTemplate', r'CLIPPED_AVG_(?P<structure>.*.nii.gz)')
replace_pat = os.path.join('SUBJECT_TEMPLATES', subjectid, r'AVG_\g<structure>')
patternList.append((find_pat, replace_pat))
print "HACK: ", patternList
return patternList
def GenerateOutputPattern(projectid, subjectid, sessionid, DefaultNodeName):
""" This function generates output path substitutions for workflows and nodes that conform to a common standard.
"""
patternList = []
find_pat = os.path.join(DefaultNodeName)
replace_pat = os.path.join(projectid, subjectid, sessionid, DefaultNodeName)
patternList.append((find_pat, replace_pat))
print "HACK: ", patternList
return patternList
def GenerateAccumulatorImagesOutputPattern(projectid, subjectid, sessionid):
""" This function generates output path substitutions for workflows and nodes that conform to a common standard.
"""
patternList = []
find_pat = "POSTERIOR_"
replace_pat = os.path.join(projectid, subjectid, sessionid) + "/POSTERIOR_"
patternList.append((find_pat, replace_pat))
print "HACK: ", patternList
return patternList
## This takes several lists and merges them, but it also removes all empty values from the lists
def MergeByExtendListElements(t1_averageList, t2_averageList, pd_averageList, fl_averageList, outputLabels_averageList, ListOfPosteriorImagesDictionary):
"""
ListOfImagesDictionaries=[
{'T1':os.path.join(mydatadir,'01_T1_half.nii.gz'),'INV_T1':os.path.join(mydatadir,'01_T1_inv_half.nii.gz'),'LABEL_MAP':os.path.join(mydatadir,'01_T1_inv_half.nii
.gz')},
{'T1':os.path.join(mydatadir,'02_T1_half.nii.gz'),'INV_T1':os.path.join(mydatadir,'02_T1_inv_half.nii.gz'),'LABEL_MAP':os.path.join(mydatadir,'02_T1_inv_half.nii
.gz')},
{'T1':os.path.join(mydatadir,'03_T1_half.nii.gz'),'INV_T1':os.path.join(mydatadir,'03_T1_inv_half.nii.gz'),'LABEL_MAP':os.path.join(mydatadir,'03_T1_inv_half.nii
.gz')}
]
outputLabels_averageList = ['brain_label_seg.nii.gz', 'brain_label_seg.nii.gz']
pd_averageList = [None, None]
t1_averageList = ['t1_average_BRAINSABC.nii.gz', 't1_average_BRAINSABC.nii.gz']
t2_averageList = ['t2_average_BRAINSABC.nii.gz', 't2_average_BRAINSABC.nii.gz']
"""
print "t1_averageList", t1_averageList
print "t2_averageList", t2_averageList
print "pd_averageList", pd_averageList
print "fl_averageList", fl_averageList
print "outputLabels_averageList", outputLabels_averageList
print "$$$$$$$$$$$$$$$$$$$$$$$"
print "ListOfPosteriorImagesDictionary", ListOfPosteriorImagesDictionary
## Initial list with empty dictionaries
ListOfImagesDictionaries = [dict() for i in range(0, len(t1_averageList))]
## HACK: Need to make it so that AVG_AIR.nii.gz is has a background value of 1
registrationImageTypes = ['T1'] # ['T1','T2'] someday.
# DefaultContinuousInterpolationType='LanczosWindowedSinc' ## Could also be Linear for speed.
DefaultContinuousInterpolationType = 'Linear'
interpolationMapping = {'T1': DefaultContinuousInterpolationType,
'T2': DefaultContinuousInterpolationType,
'PD': DefaultContinuousInterpolationType,
'FL': DefaultContinuousInterpolationType,
'BRAINMASK': 'MultiLabel'
}
## NOTE: ALl input lists MUST have the same number of elements (even if they are null)
for list_index in range(0, len(t1_averageList)):
if t1_averageList[list_index] is not None:
ListOfImagesDictionaries[list_index]['T1'] = t1_averageList[list_index]
if t2_averageList[list_index] is not None:
ListOfImagesDictionaries[list_index]['T2'] = t2_averageList[list_index]
if pd_averageList[list_index] is not None:
ListOfImagesDictionaries[list_index]['PD'] = pd_averageList[list_index]
if fl_averageList[list_index] is not None:
ListOfImagesDictionaries[list_index]['FL'] = fl_averageList[list_index]
if outputLabels_averageList[list_index] is not None:
ListOfImagesDictionaries[list_index]['BRAINMASK'] = outputLabels_averageList[list_index]
this_subj_posteriors = ListOfPosteriorImagesDictionary[list_index]
for post_items in this_subj_posteriors.items():
print "post_items", post_items
ListOfImagesDictionaries[list_index][post_items[0]] = post_items[1]
print "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
print "ListOfImagesDictionaries", ListOfImagesDictionaries
print "registrationImageTypes", registrationImageTypes
print "interpolationMapping", interpolationMapping
return ListOfImagesDictionaries, registrationImageTypes, interpolationMapping
def MakeNewAtlasTemplate(t1_image, deformed_list,
AtlasTemplate, outDefinition):
import os
import sys
import SimpleITK as sitk
patternDict = {
'AVG_AIR.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_AIR.nii.gz',
'AVG_BGM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_BASALTISSUE.nii.gz',
'AVG_CRBLGM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_CRBLGM.nii.gz',
'AVG_CRBLWM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_CRBLWM.nii.gz',
'AVG_CSF.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_CSF.nii.gz',
'AVG_NOTCSF.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_NOTCSF.nii.gz',
'AVG_NOTGM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_NOTGM.nii.gz',
'AVG_NOTVB.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_NOTVB.nii.gz',
'AVG_NOTWM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_NOTWM.nii.gz',
'AVG_SURFGM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_SURFGM.nii.gz',
'AVG_VB.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_VB.nii.gz',
'AVG_WM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_WM.nii.gz',
'AVG_ACCUMBEN.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_ACCUMBEN.nii.gz',
'AVG_CAUDATE.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_CAUDATE.nii.gz',
'AVG_PUTAMEN.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_PUTAMEN.nii.gz',
'AVG_GLOBUS.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_GLOBUS.nii.gz',
'AVG_THALAMUS.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_THALAMUS.nii.gz',
'AVG_HIPPOCAMPUS.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_HIPPOCAMPUS.nii.gz',
'AVG_BRAINMASK.nii.gz': '@ATLAS_DIRECTORY@/template_brain.nii.gz',
'T1_RESHAPED.nii.gz': '@ATLAS_DIRECTORY@/template_t1.nii.gz',
'AVG_T2.nii.gz': '@ATLAS_DIRECTORY@/template_t2.nii.gz',
'AVG_PD.nii.gz': '@ATLAS_DIRECTORY@/template_t2.nii.gz',
'AVG_FL.nii.gz': '@ATLAS_DIRECTORY@/template_t2.nii.gz'
}
templateFile = open(AtlasTemplate, 'r')
content = templateFile.read() # read entire file into memory
templateFile.close()
## Now clean up the posteriors based on anatomical knowlege.
## sometimes the posteriors are not relevant for priors
## due to anomolies around the edges.
print("\n\n\nALL_FILES: {0}\n\n\n".format(deformed_list))
load_images_list = dict()
for full_pathname in deformed_list:
base_name = os.path.basename(full_pathname)
if base_name in patternDict.keys():
load_images_list[base_name] = sitk.ReadImage(full_pathname)
else:
print("MISSING FILE FROM patternDict: {0}".format(base_name))
## Make binary dilated mask
binmask = sitk.BinaryThreshold(load_images_list['AVG_BRAINMASK.nii.gz'], 1, 1000000)
dilated5 = sitk.DilateObjectMorphology(binmask, 5)
dilated5 = sitk.Cast(dilated5, sitk.sitkFloat32) # Convert to Float32 for multiply
## Now clip the interior brain mask with dilated5
interiorPriors = [
'AVG_BGMWARP_AVG_BGM.nii.gz',
'AVG_CRBLGMWARP_AVG_CRBLGM.nii.gz',
'AVG_CRBLWMWARP_AVG_CRBLWM.nii.gz',
'AVG_CSFWARP_AVG_CSF.nii.gz',
'AVG_SURFGMWARP_AVG_SURFGM.nii.gz',
'AVG_VBWARP_AVG_VB.nii.gz',
'AVG_WMWARP_AVG_WM.nii.gz',
'AVG_ACCUMBENWARP_AVG_ACCUMBEN.nii.gz',
'AVG_CAUDATEWARP_AVG_CAUDATE.nii.gz',
'AVG_PUTAMENWARP_AVG_PUTAMEN.nii.gz',
'AVG_GLOBUSWARP_AVG_GLOBUS.nii.gz',
'AVG_THALAMUSWARP_AVG_THALAMUS.nii.gz',
'AVG_HIPPOCAMPUSWARP_AVG_HIPPOCAMPUS.nii.gz',
]
clean_deformed_list = deformed_list
T2File = None
PDFile = None
for index in range(0, len(deformed_list)):
full_pathname = deformed_list[index]
base_name = os.path.basename(full_pathname)
if base_name == 'AVG_BRAINMASK.nii.gz':
### Make Brain Mask Binary
clipped_name = 'CLIPPED_' + base_name
patternDict[clipped_name] = patternDict[base_name]
sitk.WriteImage(binmask, clipped_name)
clean_deformed_list[index] = os.path.realpath(clipped_name)
if base_name == 'AVG_T2WARP_AVG_T2.nii.gz':
T2File = full_pathname
if base_name == 'AVG_PDWARP_AVG_PD.nii.gz':
PDFile = full_pathname
if base_name in interiorPriors:
### Make clipped posteriors for brain regions
curr = sitk.Cast(sitk.ReadImage(full_pathname), sitk.sitkFloat32)
curr = curr * dilated5
clipped_name = 'CLIPPED_' + base_name
patternDict[clipped_name] = patternDict[base_name]
sitk.WriteImage(curr, clipped_name)
clean_deformed_list[index] = os.path.realpath(clipped_name)
print "HACK: ", clean_deformed_list[index]
curr = None
binmask = None
dilated5 = None
for full_pathname in clean_deformed_list:
base_name = os.path.basename(full_pathname)
if base_name in patternDict.keys():
content = content.replace(patternDict[base_name], full_pathname)
## If there is no T2, then use the PD image
if T2File is not None:
content = content.replace('@ATLAS_DIRECTORY@/template_t2.nii.gz', T2File)
elif PDFile is not None:
content = content.replace('@ATLAS_DIRECTORY@/template_t2.nii.gz', PDFile)
content = content.replace('@ATLAS_DIRECTORY@/template_t1.nii.gz', t1_image)
## NOTE: HEAD REGION CAN JUST BE T1 image.
content = content.replace('@ATLAS_DIRECTORY@/template_headregion.nii.gz', t1_image)
## NOTE: BRAIN REGION CAN JUST BE the label images.
outAtlasFullPath = os.path.realpath(outDefinition)
newFile = open(outAtlasFullPath, 'w')
newFile.write(content) # write the file with the text substitution
newFile.close()
return outAtlasFullPath, clean_deformed_list
###########################################################################
###########################################################################
###########################################################################
###########################################################################
###########################################################################
###########################################################################
## WorkupT1T2 is the main workflow to be run
###########################################################################
###########################################################################
###########################################################################
###########################################################################
###########################################################################
def WorkupT1T2(subjectid, mountPrefix, ExperimentBaseDirectoryCache, ExperimentBaseDirectoryResults, ExperimentDatabase, atlas_fname_wpath, BCD_model_path,
GLOBAL_DATA_SINK_REWRITE, InterpolationMode="Linear", Mode=10, DwiList=[], WORKFLOW_COMPONENTS=[], CLUSTER_QUEUE='', CLUSTER_QUEUE_LONG='', SGE_JOB_SCRIPT='#!/bin/bash'):
"""
Run autoworkup on all subjects data defined in the ExperimentDatabase
This is the main function to call when processing a data set with T1 & T2
data. ExperimentBaseDirectoryPrefix is the base of the directory to place results, T1Images & T2Images
are the lists of images to be used in the auto-workup. atlas_fname_wpath is
the path and filename of the atlas to use.
"""
print "Building Pipeline"
########### PIPELINE INITIALIZATION #############
baw200 = pe.Workflow(name="BAW_20120813") # HACK: This needs to be specified in the config file.
baw200.config['execution'] = {
'plugin': 'Linear',
#'stop_on_first_crash':'true',
#'stop_on_first_rerun': 'true',
'stop_on_first_crash': 'false',
'stop_on_first_rerun': 'false', # This stops at first attempt to rerun, before running, and before deleting previous results.
'hash_method': 'timestamp',
'single_thread_matlab': 'true', # Multi-core 2011a multi-core for matrix multiplication.
'remove_unnecessary_outputs': 'false',
'use_relative_paths': 'false', # relative paths should be on, require hash update when changed.
'remove_node_directories': 'false', # Experimental
'local_hash_check': 'true',
'job_finished_timeout': 45
}
baw200.config['logging'] = {
'workflow_level': 'DEBUG',
'filemanip_level': 'DEBUG',
'interface_level': 'DEBUG',
'log_directory': ExperimentBaseDirectoryCache
}
baw200.base_dir = ExperimentBaseDirectoryCache
import WorkupT1T2Single
MergeT1s = dict()
MergeT2s = dict()
MergePDs = dict()
MergeFLs = dict()
MergeOutputLabels = dict()
MergePosteriors = dict()
BAtlas = dict()
FREESURFER_ID = dict()
FixWMPartitioningNode = dict()
BRAINSCreateLabelMapFromProbabilityMapsNode = dict()
if True:
print("===================== SUBJECT: {0} ===========================".format(subjectid))
PHASE_1_oneSubjWorkflow = dict()
PHASE_1_subjInfoNode = dict()
allSessions = ExperimentDatabase.getSessionsFromSubject(subjectid)
print("Running sessions: {ses} for subject {sub}".format(ses=allSessions, sub=subjectid))
BAtlas[subjectid] = MakeAtlasNode(atlas_fname_wpath, "BAtlas_" + str(subjectid)) # Call function to create node
global_AllT1s = dict()
global_AllT2s = dict()
global_AllPDs = dict()
global_AllFLs = dict()
global_AllOthers = dict()
for sessionid in allSessions:
global_AllT1s[sessionid] = ExperimentDatabase.getFilenamesByScantype(sessionid, ['T1-30', 'T1-15'])
global_AllT2s[sessionid] = ExperimentDatabase.getFilenamesByScantype(sessionid, ['T2-30', 'T2-15'])
global_AllPDs[sessionid] = ExperimentDatabase.getFilenamesByScantype(sessionid, ['PD-30', 'PD-15'])
global_AllFLs[sessionid] = ExperimentDatabase.getFilenamesByScantype(sessionid, ['FL-30', 'FL-15'])
global_AllOthers[sessionid] = ExperimentDatabase.getFilenamesByScantype(sessionid, ['OTHER-30', 'OTHER-15'])
print("HACK: all T1s: {0} {1}".format(global_AllT1s[sessionid], len(global_AllT1s[sessionid])))
print("HACK: all T2s: {0} {1}".format(global_AllT2s[sessionid], len(global_AllT2s[sessionid])))
print("HACK: all PDs: {0} {1}".format(global_AllPDs[sessionid], len(global_AllPDs[sessionid])))
print("HACK: all FLs: {0} {1}".format(global_AllFLs[sessionid], len(global_AllFLs[sessionid])))
print("HACK: all Others: {0} {1}".format(global_AllOthers[sessionid], len(global_AllOthers[sessionid])))
projectid = ExperimentDatabase.getProjFromSession(sessionid)
print("PROJECT: {0} SUBJECT: {1} SESSION: {2}".format(projectid, subjectid, sessionid))
PHASE_1_subjInfoNode[sessionid] = pe.Node(interface=IdentityInterface(fields=
['sessionid', 'subjectid', 'projectid',
'allT1s',
'allT2s',
'allPDs',
'allFLs',
'allOthers']),
run_without_submitting=True,
name='99_PHASE_1_SubjInfoNode_' + str(subjectid) + "_" + str(sessionid))
PHASE_1_subjInfoNode[sessionid].inputs.projectid = projectid
PHASE_1_subjInfoNode[sessionid].inputs.subjectid = subjectid
PHASE_1_subjInfoNode[sessionid].inputs.sessionid = sessionid
PHASE_1_subjInfoNode[sessionid].inputs.allT1s = global_AllT1s[sessionid]
PHASE_1_subjInfoNode[sessionid].inputs.allT2s = global_AllT2s[sessionid]
PHASE_1_subjInfoNode[sessionid].inputs.allPDs = global_AllPDs[sessionid]
PHASE_1_subjInfoNode[sessionid].inputs.allFLs = global_AllFLs[sessionid]
PHASE_1_subjInfoNode[sessionid].inputs.allOthers = global_AllOthers[sessionid]
PROCESSING_PHASE = 'PHASE_1'
PHASE_1_WORKFLOW_COMPONENTS = ['BASIC', 'TISSUE_CLASSIFY']
PHASE_1_oneSubjWorkflow[sessionid] = WorkupT1T2Single.MakeOneSubWorkFlow(
projectid, subjectid, sessionid, PROCESSING_PHASE,
PHASE_1_WORKFLOW_COMPONENTS,
BCD_model_path, InterpolationMode, CLUSTER_QUEUE, CLUSTER_QUEUE_LONG)
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'projectid', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.projectid')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'subjectid', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.subjectid')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'sessionid', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.sessionid')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'allT1s', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.allT1s')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'allT2s', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.allT2s')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'allPDs', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.allPDs')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'allFLs', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.allFLs')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'allOthers', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.allOthers')
baw200.connect(BAtlas[subjectid], 'template_landmarks_31_fcsv', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.template_landmarks_31_fcsv')
baw200.connect(BAtlas[subjectid], 'template_landmark_weights_31_csv', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.template_landmark_weights_31_csv')
baw200.connect(BAtlas[subjectid], 'template_t1', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.template_t1')
baw200.connect(BAtlas[subjectid], 'ExtendedAtlasDefinition_xml', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.atlasDefinition')
numSessions = len(allSessions)
if True or numSessions > 1: # Merge all BCD_Results into a global average
mergeSubjectSessionNamesT1 = "99_MergeAllSessions_T1_" + str(subjectid)
MergeT1s[subjectid] = pe.Node(interface=Merge(numSessions),
run_without_submitting=True,
name=mergeSubjectSessionNamesT1)
mergeSubjectSessionNamesT2 = "99_MergeAllSessions_T2_" + str(subjectid)
MergeT2s[subjectid] = pe.Node(interface=Merge(numSessions),
run_without_submitting=True,
name=mergeSubjectSessionNamesT2)
mergeSubjectSessionNamesPD = "99_MergeAllSessions_PD_" + str(subjectid)
MergePDs[subjectid] = pe.Node(interface=Merge(numSessions),
run_without_submitting=True,
name=mergeSubjectSessionNamesPD)
mergeSubjectSessionNamesFL = "99_MergeAllSessions_FL_" + str(subjectid)
MergeFLs[subjectid] = pe.Node(interface=Merge(numSessions),
run_without_submitting=True,
name=mergeSubjectSessionNamesFL)
mergeSubjectSessionNamesoutputLabels = "99_MergeAllSessions_outputLabels_" + str(subjectid)
MergeOutputLabels[subjectid] = pe.Node(interface=Merge(numSessions),
run_without_submitting=True,
name=mergeSubjectSessionNamesoutputLabels)
mergeSubjectSessionNamesPosteriors = "99_MergeAllSessions_Posteriors_" + str(subjectid)
MergePosteriors[subjectid] = pe.Node(interface=Merge(numSessions),
run_without_submitting=True,
name=mergeSubjectSessionNamesPosteriors)
mergeSubjectSessionNamesFSLong = "99_MergeAllSessions_FSLong_" + str(subjectid)
index = 1
# print("HACK: HACK: HACK: {0}".format(allSessions))
for sessionid in allSessions:
index_name = 'in' + str(index)
index += 1
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.t1_average', MergeT1s[subjectid], index_name)
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.t2_average', MergeT2s[subjectid], index_name)
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.pd_average', MergePDs[subjectid], index_name)
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.fl_average', MergeFLs[subjectid], index_name)
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.outputLabels', MergeOutputLabels[subjectid], index_name)
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.posteriorImages', MergePosteriors[subjectid], index_name)
MergeByExtendListElementsNode = pe.Node(Function(function=MergeByExtendListElements,
input_names=['t1_averageList', 't2_averageList',
'pd_averageList', 'fl_averageList',
'outputLabels_averageList', 'ListOfPosteriorImagesDictionary'],
output_names=['ListOfImagesDictionaries', 'registrationImageTypes', 'interpolationMapping']),
run_without_submitting=True, name="99_MergeByExtendListElements")
baw200.connect(MergeT1s[subjectid], 'out', MergeByExtendListElementsNode, 't1_averageList')
baw200.connect(MergeT2s[subjectid], 'out', MergeByExtendListElementsNode, 't2_averageList')
baw200.connect(MergePDs[subjectid], 'out', MergeByExtendListElementsNode, 'pd_averageList')
baw200.connect(MergeFLs[subjectid], 'out', MergeByExtendListElementsNode, 'fl_averageList')
baw200.connect(MergeOutputLabels[subjectid], 'out', MergeByExtendListElementsNode, 'outputLabels_averageList')
baw200.connect(MergePosteriors[subjectid], 'out', MergeByExtendListElementsNode, 'ListOfPosteriorImagesDictionary')
### USE ANTS
import nipype.interfaces.ants as ants
myInitAvgWF = pe.Node(interface=ants.AverageImages(), name='Phase1_antsSimpleAverage')
myInitAvgWF.inputs.dimension = 3
myInitAvgWF.inputs.normalize = True
baw200.connect(MergeT1s[subjectid], 'out', myInitAvgWF, "images")
TEMPLATE_BUILD_RUN_MODE = 'MULTI_IMAGE'
if numSessions == 1:
TEMPLATE_BUILD_RUN_MODE = 'SINGLE_IMAGE'
### USE ANTS REGISTRATION
# from nipype.workflows.smri.ants import antsRegistrationTemplateBuildSingleIterationWF
from BAWantsRegistrationBuildTemplate import BAWantsRegistrationTemplateBuildSingleIterationWF
buildTemplateIteration1 = BAWantsRegistrationTemplateBuildSingleIterationWF('iteration01')
## TODO: Change these parameters
BeginANTS_iter1 = buildTemplateIteration1.get_node("BeginANTS")
BeginANTS_iter1.plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 4-8 -l mem_free=9000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE_LONG), 'overwrite': True}
wimtdeformed_iter1 = buildTemplateIteration1.get_node("wimtdeformed")
wimtdeformed_iter1.plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 1-2 -l mem_free=2000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE), 'overwrite': True}
AvgAffineTransform_iter1 = buildTemplateIteration1.get_node("AvgAffineTransform")
AvgAffineTransform_iter1.plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 1 -l mem_free=2000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE), 'overwrite': True}
wimtPassivedeformed_iter1 = buildTemplateIteration1.get_node("wimtPassivedeformed")
wimtPassivedeformed_iter1.plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 1-2 -l mem_free=2000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE), 'overwrite': True}
baw200.connect(myInitAvgWF, 'output_average_image', buildTemplateIteration1, 'inputspec.fixed_image')
baw200.connect(MergeByExtendListElementsNode, 'ListOfImagesDictionaries', buildTemplateIteration1, 'inputspec.ListOfImagesDictionaries')
baw200.connect(MergeByExtendListElementsNode, 'registrationImageTypes', buildTemplateIteration1, 'inputspec.registrationImageTypes')
baw200.connect(MergeByExtendListElementsNode, 'interpolationMapping', buildTemplateIteration1, 'inputspec.interpolationMapping')
buildTemplateIteration2 = buildTemplateIteration1.clone(name='buildTemplateIteration2')
buildTemplateIteration2 = BAWantsRegistrationTemplateBuildSingleIterationWF('Iteration02')
## TODO: Change these parameters
BeginANTS_iter2 = buildTemplateIteration2.get_node("BeginANTS")
BeginANTS_iter2.plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 4-8 -l mem_free=9000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE_LONG), 'overwrite': True}
wimtdeformed_iter2 = buildTemplateIteration2.get_node("wimtdeformed")
wimtdeformed_iter2.plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 1-2 -l mem_free=2000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE), 'overwrite': True}
AvgAffineTransform_iter2 = buildTemplateIteration2.get_node("AvgAffineTransform")
AvgAffineTransform_iter2.plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 1 -l mem_free=2000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE), 'overwrite': True}
wimtPassivedeformed_iter2 = buildTemplateIteration2.get_node("wimtPassivedeformed")
wimtPassivedeformed_iter2.plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 1-2 -l mem_free=2000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE), 'overwrite': True}
baw200.connect(buildTemplateIteration1, 'outputspec.template', buildTemplateIteration2, 'inputspec.fixed_image')
baw200.connect(MergeByExtendListElementsNode, 'ListOfImagesDictionaries', buildTemplateIteration2, 'inputspec.ListOfImagesDictionaries')
baw200.connect(MergeByExtendListElementsNode, 'registrationImageTypes', buildTemplateIteration2, 'inputspec.registrationImageTypes')
baw200.connect(MergeByExtendListElementsNode, 'interpolationMapping', buildTemplateIteration2, 'inputspec.interpolationMapping')
### Now define where the final organized outputs should go.
SubjectTemplate_DataSink = pe.Node(nio.DataSink(), name="SubjectTemplate_DS")
SubjectTemplate_DataSink.overwrite = GLOBAL_DATA_SINK_REWRITE
SubjectTemplate_DataSink.inputs.base_directory = ExperimentBaseDirectoryResults
SubjectTemplate_DataSink.inputs.regexp_substitutions = GenerateSubjectOutputPattern(subjectid)
baw200.connect(buildTemplateIteration2, 'outputspec.template', SubjectTemplate_DataSink, 'ANTSTemplate.@template')
MakeNewAtlasTemplateNode = pe.Node(interface=Function(function=MakeNewAtlasTemplate,
input_names=['t1_image', 'deformed_list', 'AtlasTemplate', 'outDefinition'],
output_names=['outAtlasFullPath', 'clean_deformed_list']),
# This is a lot of work, so submit it run_without_submitting=True,
run_without_submitting=True, # HACK: THIS NODE REALLY SHOULD RUN ON THE CLUSTER!
name='99_MakeNewAtlasTemplate')
MakeNewAtlasTemplateNode.plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 1-1 -l mem_free=1000M -o /nfsscratch/PREDICT/hjohnson/TrackOn/scripts/MNA_out.out -e /nfsscratch/PREDICT/hjohnson/TrackOn/scripts/MNA_err.err {QUEUE_OPTIONS}'.format(
QUEUE_OPTIONS=CLUSTER_QUEUE), 'overwrite': True}
MakeNewAtlasTemplateNode.inputs.outDefinition = 'AtlasDefinition_' + subjectid + '.xml'
baw200.connect(BAtlas[subjectid], 'ExtendedAtlasDefinition_xml_in', MakeNewAtlasTemplateNode, 'AtlasTemplate')
baw200.connect(buildTemplateIteration2, 'outputspec.template', MakeNewAtlasTemplateNode, 't1_image')
baw200.connect(buildTemplateIteration2, 'outputspec.passive_deformed_templates', MakeNewAtlasTemplateNode, 'deformed_list')
baw200.connect(MakeNewAtlasTemplateNode, 'clean_deformed_list', SubjectTemplate_DataSink, 'ANTSTemplate.@passive_deformed_templates')
###### Starting Phase II
PHASE_2_oneSubjWorkflow = dict()
PHASE_2_subjInfoNode = dict()
BASIC_DataSink = dict()
TC_DataSink = dict()
AddLikeTissueSink = dict()
AccumulateLikeTissuePosteriorsNode = dict()
STAPLE = dict()
MergeSTAPLETransform = dict()
MergeSTAPLELabel = dict()
ANTSLabelWarpFromSubjectAtlasToSession = dict()
### Multi Label STAPLE
currentSTAPLENDName = 'STAPLE' + str(subjectid)
STAPLE[ subjectid ] = pe.Node( interface = BRAINSMultiSTAPLE(),
name=currentSTAPLENDName )
baw200.connect( buildTemplateIteration2, 'outputspec.template',
STAPLE[ subjectid ] , 'inputCompositeT1Volume')
STAPLE[ subjectid ].inputs.outputMultiSTAPLE = 'outputMultiStaple.nii.gz'
STAPLE[ subjectid ].inputs.outputConfusionMatrix = 'outputConfusionMatrix.mat'
### Store STAPLE output for subject-specific atlas
baw200.connect( STAPLE[ subjectid ], 'outputConfusionMatrix',
SubjectTemplate_DataSink, 'ANTSTemplate.@stapleConfusionMatrix')
baw200.connect( STAPLE[ subjectid ], 'outputMultiSTAPLE',
SubjectTemplate_DataSink, 'ANTSTemplate.@stapleOutputLabel')
### Merge for Transform
currentMergeSTAPLETransform = 'MergeSTAPLETransform' + str(subjectid)
MergeSTAPLETransform[ subjectid ] = pe.Node( interface=Merge( len( allSessions) ),
run_without_submitting=True,
name=currentMergeSTAPLETransform)
baw200.connect( MergeSTAPLETransform[ subjectid ], 'out',
STAPLE[ subjectid ], 'inputTransform')
### Merge for Label
currentMergeSTAPLELabel = 'MergeSTAPLELabel' + str(subjectid)
MergeSTAPLELabel[ subjectid ] = pe.Node( interface=Merge( len( allSessions) ),
run_without_submitting=True,
name=currentMergeSTAPLELabel)
baw200.connect( MergeSTAPLELabel[ subjectid ], 'out',
STAPLE[ subjectid ], 'inputLabelVolume')
# STAPLE::: session label and deformations are to be added in the for loop
#{
for sessionid in allSessions:
projectid = ExperimentDatabase.getProjFromSession(sessionid)
print("PHASE II PROJECT: {0} SUBJECT: {1} SESSION: {2}".format(projectid, subjectid, sessionid))
PHASE_2_subjInfoNode[sessionid] = pe.Node(interface=IdentityInterface(fields=
['sessionid', 'subjectid', 'projectid',
'allT1s',
'allT2s',
'allPDs',
'allFLs',
'allOthers']),
run_without_submitting=True,
name='99_PHASE_2_SubjInfoNode_' + str(subjectid) + "_" + str(sessionid))
PHASE_2_subjInfoNode[sessionid].inputs.projectid = projectid
PHASE_2_subjInfoNode[sessionid].inputs.subjectid = subjectid
PHASE_2_subjInfoNode[sessionid].inputs.sessionid = sessionid
PHASE_2_subjInfoNode[sessionid].inputs.allT1s = ExperimentDatabase.getFilenamesByScantype(sessionid, ['T1-30', 'T1-15'])
PHASE_2_subjInfoNode[sessionid].inputs.allT2s = ExperimentDatabase.getFilenamesByScantype(sessionid, ['T2-30', 'T2-15'])
PHASE_2_subjInfoNode[sessionid].inputs.allPDs = ExperimentDatabase.getFilenamesByScantype(sessionid, ['PD-30', 'PD-15'])
PHASE_2_subjInfoNode[sessionid].inputs.allFLs = ExperimentDatabase.getFilenamesByScantype(sessionid, ['FL-30', 'FL-15'])
PHASE_2_subjInfoNode[sessionid].inputs.allOthers = ExperimentDatabase.getFilenamesByScantype(sessionid, ['OTHER-30', 'OTHER-15'])
PROCESSING_PHASE = 'PHASE_2'
PHASE_2_oneSubjWorkflow[sessionid] = WorkupT1T2Single.MakeOneSubWorkFlow(
projectid, subjectid, sessionid, PROCESSING_PHASE,
WORKFLOW_COMPONENTS,
BCD_model_path, InterpolationMode, CLUSTER_QUEUE, CLUSTER_QUEUE_LONG)
baw200.connect(PHASE_2_subjInfoNode[sessionid], 'projectid', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.projectid')
baw200.connect(PHASE_2_subjInfoNode[sessionid], 'subjectid', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.subjectid')
baw200.connect(PHASE_2_subjInfoNode[sessionid], 'sessionid', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.sessionid')
baw200.connect(PHASE_2_subjInfoNode[sessionid], 'allT1s', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.allT1s')
baw200.connect(PHASE_2_subjInfoNode[sessionid], 'allT2s', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.allT2s')
baw200.connect(PHASE_2_subjInfoNode[sessionid], 'allPDs', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.allPDs')
baw200.connect(PHASE_2_subjInfoNode[sessionid], 'allFLs', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.allFLs')
baw200.connect(PHASE_2_subjInfoNode[sessionid], 'allOthers', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.allOthers')
baw200.connect(BAtlas[subjectid], 'template_landmarks_31_fcsv', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.template_landmarks_31_fcsv')
baw200.connect(BAtlas[subjectid], 'template_landmark_weights_31_csv', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.template_landmark_weights_31_csv')
baw200.connect(buildTemplateIteration2, 'outputspec.template', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.template_t1')
baw200.connect(MakeNewAtlasTemplateNode, 'outAtlasFullPath', PHASE_2_oneSubjWorkflow[sessionid], 'inputspec.atlasDefinition')
### Now define where the final organized outputs should go.
BASIC_DataSink[sessionid] = pe.Node(nio.DataSink(), name="BASIC_DS_" + str(subjectid) + "_" + str(sessionid))
BASIC_DataSink[sessionid].overwrite = GLOBAL_DATA_SINK_REWRITE
BASIC_DataSink[sessionid].inputs.base_directory = ExperimentBaseDirectoryResults
BASIC_DataSink[sessionid].inputs.regexp_substitutions = GenerateOutputPattern(projectid, subjectid, sessionid, 'ACPCAlign')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.outputLandmarksInACPCAlignedSpace', BASIC_DataSink[sessionid], 'ACPCAlign.@outputLandmarksInACPCAlignedSpace')
# baw200.connect(PHASE_2_oneSubjWorkflow[sessionid],'outputspec.BCD_ACPC_T1',BASIC_DataSink[sessionid],'ACPCAlign.@BCD_ACPC_T1')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.BCD_ACPC_T1_CROPPED', BASIC_DataSink[sessionid], 'ACPCAlign.@BCD_ACPC_T1_CROPPED')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.outputLandmarksInInputSpace', BASIC_DataSink[sessionid], 'ACPCAlign.@outputLandmarksInInputSpace')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.outputTransform', BASIC_DataSink[sessionid], 'ACPCAlign.@outputTransform')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.LMIatlasToSubjectTransform', BASIC_DataSink[sessionid], 'ACPCAlign.@LMIatlasToSubjectTransform')
# baw200.connect(PHASE_2_oneSubjWorkflow[sessionid],'outputspec.TissueClassifyatlasToSubjectTransform',BASIC_DataSink[sessionid],'ACPCAlign.@TissueClassifyatlasToSubjectTransform')
currentFixWMPartitioningName = 'FixWMPartitioning_' + str(subjectid) + "_" + str(sessionid)
FixWMPartitioningNode[sessionid] = pe.Node(interface=Function(function=FixWMPartitioning,
input_names=['brainMask', 'PosteriorsList'],
output_names=['UpdatedPosteriorsList', 'MatchingFGCodeList', 'MatchingLabelList', 'nonAirRegionMask']),
name=currentFixWMPartitioningName)
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.outputLabels', FixWMPartitioningNode[sessionid], 'brainMask')
baw200.connect([(PHASE_2_oneSubjWorkflow[sessionid], FixWMPartitioningNode[sessionid],
[(('outputspec.posteriorImages', UnwrapPosteriorImagesFromDictionaryFunction), 'PosteriorsList')])])
currentBRAINSCreateLabelMapFromProbabilityMapsName = 'BRAINSCreateLabelMapFromProbabilityMaps_' + str(subjectid) + "_" + str(sessionid)
BRAINSCreateLabelMapFromProbabilityMapsNode[sessionid] = pe.Node(interface=BRAINSCreateLabelMapFromProbabilityMaps(),
name=currentBRAINSCreateLabelMapFromProbabilityMapsName)
baw200.connect(FixWMPartitioningNode[sessionid], 'UpdatedPosteriorsList', BRAINSCreateLabelMapFromProbabilityMapsNode[sessionid], 'inputProbabilityVolume')
baw200.connect(FixWMPartitioningNode[sessionid], 'MatchingFGCodeList', BRAINSCreateLabelMapFromProbabilityMapsNode[sessionid], 'foregroundPriors')
baw200.connect(FixWMPartitioningNode[sessionid], 'MatchingLabelList', BRAINSCreateLabelMapFromProbabilityMapsNode[sessionid], 'priorLabelCodes')
baw200.connect(FixWMPartitioningNode[sessionid], 'nonAirRegionMask', BRAINSCreateLabelMapFromProbabilityMapsNode[sessionid], 'nonAirRegionMask')
## TODO: Fix the file names
BRAINSCreateLabelMapFromProbabilityMapsNode[sessionid].inputs.dirtyLabelVolume = 'fixed_headlabels_seg.nii.gz'
BRAINSCreateLabelMapFromProbabilityMapsNode[sessionid].inputs.cleanLabelVolume = 'fixed_brainlabels_seg.nii.gz'
### Now define where the final organized outputs should go.
### Now define where the final organized outputs should go.
TC_DataSink[sessionid] = pe.Node(nio.DataSink(), name="TISSUE_CLASSIFY_DS_" + str(subjectid) + "_" + str(sessionid))
TC_DataSink[sessionid].overwrite = GLOBAL_DATA_SINK_REWRITE
TC_DataSink[sessionid].inputs.base_directory = ExperimentBaseDirectoryResults
TC_DataSink[sessionid].inputs.regexp_substitutions = GenerateOutputPattern(projectid, subjectid,
sessionid, 'TissueClassify')
baw200.connect(BRAINSCreateLabelMapFromProbabilityMapsNode[sessionid], 'cleanLabelVolume', TC_DataSink[sessionid], 'TissueClassify.@outputLabels')
baw200.connect(BRAINSCreateLabelMapFromProbabilityMapsNode[sessionid], 'dirtyLabelVolume', TC_DataSink[sessionid], 'TissueClassify.@outputHeadLabels')
from PipeLineFunctionHelpers import makeListOfValidImages
if len(global_AllT1s[sessionid]) > 0:
baw200.connect([(PHASE_2_oneSubjWorkflow[sessionid], TC_DataSink[sessionid], [(('outputspec.t1_average', makeListOfValidImages), 'TissueClassify.@t1_average')])])
if len(global_AllT2s[sessionid]) > 0:
print "XXXXYYYY {0}".format(global_AllT2s[sessionid])
baw200.connect([(PHASE_2_oneSubjWorkflow[sessionid], TC_DataSink[sessionid], [(('outputspec.t2_average', makeListOfValidImages), 'TissueClassify.@t2_average')])])
if len(global_AllPDs[sessionid]) > 0:
baw200.connect([(PHASE_2_oneSubjWorkflow[sessionid], TC_DataSink[sessionid], [(('outputspec.pd_average', makeListOfValidImages), 'TissueClassify.@pd_average')])])
if len(global_AllFLs[sessionid]) > 0:
baw200.connect([(PHASE_2_oneSubjWorkflow[sessionid], TC_DataSink[sessionid], [(('outputspec.fl_average', makeListOfValidImages), 'TissueClassify.@fl_average')])])
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.TissueClassifyatlasToSubjectTransform', TC_DataSink[sessionid], 'TissueClassify.@atlasToSubjectTransform')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.TissueClassifyatlasToSubjectInverseTransform', TC_DataSink[sessionid], 'TissueClassify.@atlasToSubjectInverseTransform')
baw200.connect(FixWMPartitioningNode[sessionid], 'UpdatedPosteriorsList', TC_DataSink[sessionid], 'TissueClassify.@posteriors')
### Now clean up by adding together many of the items PHASE_2_oneSubjWorkflow
currentAccumulateLikeTissuePosteriorsName = 'AccumulateLikeTissuePosteriors_' + str(subjectid) + "_" + str(sessionid)
AccumulateLikeTissuePosteriorsNode[sessionid] = pe.Node(interface=Function(function=AccumulateLikeTissuePosteriors,
input_names=['posteriorImages'],
output_names=['AccumulatePriorsList', 'AccumulatePriorsNames']),
name=currentAccumulateLikeTissuePosteriorsName)
baw200.connect(FixWMPartitioningNode[sessionid], 'UpdatedPosteriorsList', AccumulateLikeTissuePosteriorsNode[sessionid], 'posteriorImages')
### Now define where the final organized outputs should go.
AddLikeTissueSink[sessionid] = pe.Node(nio.DataSink(), name="ACCUMULATED_POSTERIORS_" + str(subjectid) + "_" + str(sessionid))
AddLikeTissueSink[sessionid].inputs.base_directory = ExperimentBaseDirectoryResults
# AddLikeTissueSink[sessionid].inputs.regexp_substitutions = GenerateAccumulatorImagesOutputPattern(projectid, subjectid, sessionid)
AddLikeTissueSink[sessionid].inputs.regexp_substitutions = GenerateOutputPattern(projectid, subjectid, sessionid, 'ACCUMULATED_POSTERIORS')
baw200.connect(AccumulateLikeTissuePosteriorsNode[sessionid], 'AccumulatePriorsList', AddLikeTissueSink[sessionid], 'ACCUMULATED_POSTERIORS.@AccumulateLikeTissuePosteriorsOutputDir')
ClipT1ImageWithBrainMaskNode = dict()
AtlasToSubjectantsRegistration = dict()
AntsLabelWarpToSubject = dict()
AntsLabelWarpedToSubject_DS = dict()
myLocalSegWF = dict()
SEGMENTATION_DataSink = dict()
STAPLE_SEGMENTATION_DataSink = dict()
FSCROSS_WF = dict()
FSPREP_DS = dict()
FSCROSS_DS = dict()
MergeStage2AverageImages = dict()
MergeStage2BinaryVolumes = dict()
SnapShotWriter = dict()
MergeSessionSubjectToAtlas = dict()
MergeMultiLabelSessionSubjectToAtlas = dict()
LinearSubjectToAtlasANTsApplyTransforms = dict()
MultiLabelSubjectToAtlasANTsApplyTransforms = dict()
Subj2Atlas_DS = dict()
FSBASE_DS = dict()
if 'SEGMENTATION' in WORKFLOW_COMPONENTS: # Run the ANTS Registration from Atlas to Subject for BCut spatial priors propagation.
import PipeLineFunctionHelpers
## Second clip to brain tissue region
### Now clean up by adding together many of the items PHASE_2_oneSubjWorkflow
currentClipT1ImageWithBrainMaskName = 'ClipT1ImageWithBrainMask_' + str(subjectid) + "_" + str(sessionid)
ClipT1ImageWithBrainMaskNode[sessionid] = pe.Node(interface=Function(function=PipeLineFunctionHelpers.ClipT1ImageWithBrainMask,
input_names=['t1_image', 'brain_labels', 'clipped_file_name'],
output_names=['clipped_file']),
name=currentClipT1ImageWithBrainMaskName)
ClipT1ImageWithBrainMaskNode[sessionid].inputs.clipped_file_name = 'clipped_from_BABC_labels_t1.nii.gz'
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t1_average', ClipT1ImageWithBrainMaskNode[sessionid], 't1_image')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.outputLabels', ClipT1ImageWithBrainMaskNode[sessionid], 'brain_labels')
from nipype.interfaces.ants import (Registration, ApplyTransforms)
currentAtlasToSubjectantsRegistration = 'AtlasToSubjectantsRegistration_' + str(subjectid) + "_" + str(sessionid)
AtlasToSubjectantsRegistration[sessionid] = pe.Node(interface=Registration(), name=currentAtlasToSubjectantsRegistration)
AtlasToSubjectantsRegistration[sessionid].inputs.dimension = 3
AtlasToSubjectantsRegistration[sessionid].inputs.transforms = ["Affine", "SyN"]
AtlasToSubjectantsRegistration[sessionid].inputs.transform_parameters = [[0.1], [0.15, 3.0, 0.0]]
AtlasToSubjectantsRegistration[sessionid].inputs.metric = ['Mattes', 'CC']
AtlasToSubjectantsRegistration[sessionid].inputs.sampling_strategy = ['Regular', None]
AtlasToSubjectantsRegistration[sessionid].inputs.sampling_percentage = [1.0, 1.0]
AtlasToSubjectantsRegistration[sessionid].inputs.metric_weight = [1.0, 1.0]
AtlasToSubjectantsRegistration[sessionid].inputs.radius_or_number_of_bins = [32, 4]
AtlasToSubjectantsRegistration[sessionid].inputs.number_of_iterations = [[1000, 1000, 1000], [10000, 500, 500, 200]]
AtlasToSubjectantsRegistration[sessionid].inputs.convergence_threshold = [5e-7, 5e-7]
AtlasToSubjectantsRegistration[sessionid].inputs.convergence_window_size = [25, 25]
AtlasToSubjectantsRegistration[sessionid].inputs.use_histogram_matching = [True, True]
AtlasToSubjectantsRegistration[sessionid].inputs.shrink_factors = [[4, 2, 1], [5, 4, 2, 1]]
AtlasToSubjectantsRegistration[sessionid].inputs.smoothing_sigmas = [[4, 2, 0], [5, 4, 2, 0]]
AtlasToSubjectantsRegistration[sessionid].inputs.use_estimate_learning_rate_once = [False, False]
AtlasToSubjectantsRegistration[sessionid].inputs.write_composite_transform = True
AtlasToSubjectantsRegistration[sessionid].inputs.collapse_output_transforms = True
AtlasToSubjectantsRegistration[sessionid].inputs.output_transform_prefix = 'AtlasToSubject_'
AtlasToSubjectantsRegistration[sessionid].inputs.winsorize_lower_quantile = 0.025
AtlasToSubjectantsRegistration[sessionid].inputs.winsorize_upper_quantile = 0.975
AtlasToSubjectantsRegistration[sessionid].inputs.collapse_linear_transforms_to_fixed_image_header = False
AtlasToSubjectantsRegistration[sessionid].inputs.output_warped_image = 'atlas2subject.nii.gz'
AtlasToSubjectantsRegistration[sessionid].inputs.output_inverse_warped_image = 'subject2atlas.nii.gz'
AtlasToSubjectantsRegistration[sessionid].plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 4-8 -l mem_free=9000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE_LONG), 'overwrite': True}
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t1_average', AtlasToSubjectantsRegistration[sessionid], 'fixed_image')
baw200.connect(BAtlas[subjectid], 'template_t1', AtlasToSubjectantsRegistration[sessionid], 'moving_image')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.LMIatlasToSubjectTransform', AtlasToSubjectantsRegistration[sessionid], 'initial_moving_transform')
# baw200.connect(BAtlas[subjectid],'template_t1_clipped',AtlasToSubjectantsRegistration[sessionid], 'moving_image')
# baw200.connect(ClipT1ImageWithBrainMaskNode[sessionid], 'clipped_file', AtlasToSubjectantsRegistration[sessionid], 'fixed_image')
global_AllT1s[sessionid] = ExperimentDatabase.getFilenamesByScantype(sessionid, ['T1-30', 'T1-15'])
global_AllT2s[sessionid] = ExperimentDatabase.getFilenamesByScantype(sessionid, ['T2-30', 'T2-15'])
global_AllPDs[sessionid] = ExperimentDatabase.getFilenamesByScantype(sessionid, ['PD-30', 'PD-15'])
global_AllFLs[sessionid] = ExperimentDatabase.getFilenamesByScantype(sessionid, ['FL-30', 'FL-15'])
global_AllOthers[sessionid] = ExperimentDatabase.getFilenamesByScantype(sessionid, ['OTHER-30', 'OTHER-15'])
print("HACK2: all T1s: {0} {1}".format(global_AllT1s[sessionid], len(global_AllT1s[sessionid])))
print("HACK2: all T2s: {0} {1}".format(global_AllT2s[sessionid], len(global_AllT2s[sessionid])))
print("HACK2: all PDs: {0} {1}".format(global_AllPDs[sessionid], len(global_AllPDs[sessionid])))
print("HACK2: all FLs: {0} {1}".format(global_AllFLs[sessionid], len(global_AllFLs[sessionid])))
print("HACK2: all Others: {0} {1}".format(global_AllOthers[sessionid], len(global_AllOthers[sessionid])))
if ('SEGMENTATION' in WORKFLOW_COMPONENTS): # Currently only works with multi-modal_data
print("HACK SEGMENTATION IN WORKFLOW_COMPONENTS {0}".format(WORKFLOW_COMPONENTS))
if (len(global_AllT2s[sessionid]) > 0): # Currently only works with multi-modal_data
print("HACK len(global_AllT2s[sessionid]) > 0 : {0}".format(len(global_AllT2s[sessionid])))
print("HACK")
if ('SEGMENTATION' in WORKFLOW_COMPONENTS):
from WorkupT1T2BRAINSCut import CreateBRAINSCutWorkflow
t1Only = not(len(global_AllT2s[sessionid]) > 0)
myLocalSegWF[sessionid] = CreateBRAINSCutWorkflow(projectid, subjectid, sessionid, 'Segmentation',
CLUSTER_QUEUE, CLUSTER_QUEUE_LONG, BAtlas[subjectid], t1Only) # Note: Passing in the entire BAtlas Object here!
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.posteriorImages', myLocalSegWF[sessionid],
"inputspec.posteriorDictionary")
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t1_average', myLocalSegWF[sessionid], "inputspec.T1Volume")
if (len(global_AllT2s[sessionid]) > 0):
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t2_average', myLocalSegWF[sessionid], "inputspec.T2Volume")
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.outputLabels', myLocalSegWF[sessionid], "inputspec.RegistrationROI")
## NOTE: Element 0 of AccumulatePriorsList is the accumulated GM tissue
# baw200.connect([(AccumulateLikeTissuePosteriorsNode[sessionid], myLocalSegWF[sessionid],
# [(('AccumulatePriorsList', getListIndex, 0), "inputspec.TotalGM")]),
# ])
baw200.connect(AtlasToSubjectantsRegistration[sessionid], 'composite_transform', myLocalSegWF[sessionid], 'inputspec.atlasToSubjectTransform')
### Now define where the final organized outputs should go.
SEGMENTATION_DataSink[sessionid] = pe.Node(nio.DataSink(), name="CleanedDenoisedSegmentation_DS_" + str(subjectid) + "_" + str(sessionid))
SEGMENTATION_DataSink[sessionid].overwrite = GLOBAL_DATA_SINK_REWRITE
SEGMENTATION_DataSink[sessionid].inputs.base_directory = ExperimentBaseDirectoryResults
# SEGMENTATION_DataSink[sessionid].inputs.regexp_substitutions = GenerateOutputPattern(projectid, subjectid, sessionid,'BRAINSCut')
# SEGMENTATION_DataSink[sessionid].inputs.regexp_substitutions = GenerateBRAINSCutImagesOutputPattern(projectid, subjectid, sessionid)
SEGMENTATION_DataSink[sessionid].inputs.substitutions = [('Segmentations', os.path.join(projectid, subjectid, sessionid, 'CleanedDenoisedRFSegmentations')),
('subjectANNLabel_', ''),
('ANNContinuousPrediction',''),
('subject.nii.gz','.nii.gz'),
('.nii.gz', '_seg.nii.gz')
]
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftCaudate', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryLeftCaudate')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightCaudate', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryRightCaudate')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftHippocampus', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryLeftHippocampus')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightHippocampus', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryRightHippocampus')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftPutamen', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryLeftPutamen')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightPutamen', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryRightPutamen')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftThalamus', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryLeftThalamus')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightThalamus', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryRightThalamus')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftAccumben', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryLeftAccumben')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightAccumben', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryRightAccumben')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftGlobus', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryLeftGlobus')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightGlobus', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputBinaryRightGlobus')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputLabelImageName', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputLabelImageName')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputCSVFileName', SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputCSVFileName')
#baw200.connect(myLocalSegWF[sessionid], 'outputspec.cleaned_labels', SEGMENTATION_DataSink[sessionid], 'Segmentations.@cleaned_labels')
MergeStage2BinaryVolumesName = "99_MergeStage2BinaryVolumes_" + str(sessionid)
MergeStage2BinaryVolumes[sessionid] = pe.Node(interface=Merge(12),
run_without_submitting=True,
name=MergeStage2BinaryVolumesName)
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftAccumben', MergeStage2BinaryVolumes[sessionid], 'in1')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftCaudate', MergeStage2BinaryVolumes[sessionid], 'in2')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftPutamen', MergeStage2BinaryVolumes[sessionid], 'in3')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftGlobus', MergeStage2BinaryVolumes[sessionid], 'in4')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftThalamus', MergeStage2BinaryVolumes[sessionid], 'in5')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftHippocampus', MergeStage2BinaryVolumes[sessionid], 'in6')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightAccumben', MergeStage2BinaryVolumes[sessionid], 'in7')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightCaudate', MergeStage2BinaryVolumes[sessionid], 'in8')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightPutamen', MergeStage2BinaryVolumes[sessionid], 'in9')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightGlobus', MergeStage2BinaryVolumes[sessionid], 'in10')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightThalamus', MergeStage2BinaryVolumes[sessionid], 'in11')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightHippocampus', MergeStage2BinaryVolumes[sessionid], 'in12')
MergeStage2AverageImagesName = "99_mergeAvergeStage2Images_" + str(sessionid)
MergeStage2AverageImages[sessionid] = pe.Node(interface=Merge(2),
run_without_submitting=True,
name=MergeStage2AverageImagesName)
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t1_average', MergeStage2AverageImages[sessionid], 'in1')
if (len(global_AllT2s[sessionid]) > 0):
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t2_average', MergeStage2AverageImages[sessionid], 'in2')
## SnapShotWriter[sessionid] for Segmented result checking:
SnapShotWriterNodeName = "SnapShotWriter_" + str(sessionid)
SnapShotWriter[sessionid] = pe.Node(interface=BRAINSSnapShotWriter(), name=SnapShotWriterNodeName)
SnapShotWriter[sessionid].plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 1-1 -l mem_free=1000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE_LONG), 'overwrite': True}
## output specification
SnapShotWriter[sessionid].inputs.outputFilename = 'snapShot' + str(sessionid) + '.png'
## neccessary parameters (FIXED)
SnapShotWriter[sessionid].inputs.inputPlaneDirection = [2, 1, 1, 1, 1, 0, 0]
SnapShotWriter[sessionid].inputs.inputSliceToExtractInPhysicalPoint = [-3, -7, -3, 5, 7, 22, -22]
## connect SnapShotWriter[sessionid] to the baw200
baw200.connect(MergeStage2AverageImages[sessionid], 'out', SnapShotWriter[sessionid], 'inputVolumes')
baw200.connect(MergeStage2BinaryVolumes[sessionid], 'out', SnapShotWriter[sessionid], 'inputBinaryVolumes')
#####
### Now define where the final organized outputs should go.
baw200.connect(SnapShotWriter[sessionid], 'outputFilename',
SEGMENTATION_DataSink[sessionid], 'Segmentations.@outputSnapShot')
#####
### Nec atlas label to subject space warping (WORKING)
from nipype.interfaces.ants import ApplyTransforms
currentAntsLabelWarpToSubject = 'AntsLabelWarpToSubject' + str(subjectid) + "_" + str(sessionid)
AntsLabelWarpToSubject[sessionid] = pe.Node(interface=ApplyTransforms(),
name=currentAntsLabelWarpToSubject)
AntsLabelWarpToSubject[sessionid].inputs.dimension = 3
AntsLabelWarpToSubject[sessionid].inputs.output_image = 'warped_hncma_atlas_seg.nii.gz'
AntsLabelWarpToSubject[sessionid].inputs.interpolation = "MultiLabel"
baw200.connect(AtlasToSubjectantsRegistration[sessionid], 'composite_transform', # check with Hans, why not sessionid???
AntsLabelWarpToSubject[sessionid], 'transforms')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t1_average',
AntsLabelWarpToSubject[sessionid], 'reference_image')
baw200.connect(BAtlas[subjectid], 'hncma-atlas',
AntsLabelWarpToSubject[sessionid], 'input_image')
#####
### Now define where the final organized outputs should go.
AntsLabelWarpedToSubject_DSName = "AntsLabelWarpedToSubject_DS_" + str(sessionid)
AntsLabelWarpedToSubject_DS[sessionid] = pe.Node(nio.DataSink(), name=AntsLabelWarpedToSubject_DSName)
AntsLabelWarpedToSubject_DS[sessionid].overwrite = GLOBAL_DATA_SINK_REWRITE
AntsLabelWarpedToSubject_DS[sessionid].inputs.base_directory = ExperimentBaseDirectoryResults
AntsLabelWarpedToSubject_DS[sessionid].inputs.substitutions = [('AntsLabelWarpedToSubject', os.path.join(projectid, subjectid, sessionid, 'AntsLabelWarpedToSubject'))]
baw200.connect(AntsLabelWarpToSubject[sessionid], 'output_image',
AntsLabelWarpedToSubject_DS[sessionid], 'AntsLabelWarpedToSubject')
#####
#=============================================================================================================================
#======== Start warping subject to atlas images
MergeSessionSubjectToAtlasName = "99_MergeSessionSubjectToAtlas_" + str(sessionid)
if (len(global_AllT2s[sessionid]) > 0):
MergeSessionSubjectToAtlas[sessionid] = pe.Node(interface=Merge(15),
run_without_submitting=True,
name=MergeSessionSubjectToAtlasName)
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t1_average', MergeSessionSubjectToAtlas[sessionid], 'in1')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t2_average', MergeSessionSubjectToAtlas[sessionid], 'in2')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftAccumben', MergeSessionSubjectToAtlas[sessionid], 'in3')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftCaudate', MergeSessionSubjectToAtlas[sessionid], 'in4')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftPutamen', MergeSessionSubjectToAtlas[sessionid], 'in5')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftGlobus', MergeSessionSubjectToAtlas[sessionid], 'in6')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftThalamus', MergeSessionSubjectToAtlas[sessionid], 'in7')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftHippocampus', MergeSessionSubjectToAtlas[sessionid], 'in8')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightAccumben', MergeSessionSubjectToAtlas[sessionid], 'in9')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightCaudate', MergeSessionSubjectToAtlas[sessionid], 'in10')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightPutamen', MergeSessionSubjectToAtlas[sessionid], 'in11')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightGlobus', MergeSessionSubjectToAtlas[sessionid], 'in12')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightThalamus', MergeSessionSubjectToAtlas[sessionid], 'in13')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightHippocampus', MergeSessionSubjectToAtlas[sessionid], 'in14')
baw200.connect(FixWMPartitioningNode[sessionid], 'UpdatedPosteriorsList', MergeSessionSubjectToAtlas[sessionid], 'in15')
else:
MergeSessionSubjectToAtlas[sessionid] = pe.Node(interface=Merge(14),
run_without_submitting=True,
name=MergeSessionSubjectToAtlasName)
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftAccumben', MergeSessionSubjectToAtlas[sessionid], 'in1')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftCaudate', MergeSessionSubjectToAtlas[sessionid], 'in2')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftPutamen', MergeSessionSubjectToAtlas[sessionid], 'in3')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftGlobus', MergeSessionSubjectToAtlas[sessionid], 'in4')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftThalamus', MergeSessionSubjectToAtlas[sessionid], 'in5')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryLeftHippocampus', MergeSessionSubjectToAtlas[sessionid], 'in6')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightAccumben', MergeSessionSubjectToAtlas[sessionid], 'in7')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightCaudate', MergeSessionSubjectToAtlas[sessionid], 'in8')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightPutamen', MergeSessionSubjectToAtlas[sessionid], 'in9')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightGlobus', MergeSessionSubjectToAtlas[sessionid], 'in10')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightThalamus', MergeSessionSubjectToAtlas[sessionid], 'in11')
baw200.connect(myLocalSegWF[sessionid], 'outputspec.outputBinaryRightHippocampus', MergeSessionSubjectToAtlas[sessionid], 'in12')
baw200.connect(FixWMPartitioningNode[sessionid], 'UpdatedPosteriorsList', MergeSessionSubjectToAtlas[sessionid], 'in13')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t1_average', MergeSessionSubjectToAtlas[sessionid], 'in14')
## NOTE: SKIPPING baw200.connect( PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.t2_average', MergeSessionSubjectToAtlas[sessionid], 'in2')
LinearSubjectToAtlasANTsApplyTransformsName = 'LinearSubjectToAtlasANTsApplyTransforms_' + str(sessionid)
LinearSubjectToAtlasANTsApplyTransforms[sessionid] = pe.MapNode(interface=ApplyTransforms(), iterfield=['input_image'], name=LinearSubjectToAtlasANTsApplyTransformsName)
LinearSubjectToAtlasANTsApplyTransforms[sessionid].plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 1 -l mem_free=1000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE), 'overwrite': True}
LinearSubjectToAtlasANTsApplyTransforms[sessionid].inputs.interpolation = 'Linear'
baw200.connect(AtlasToSubjectantsRegistration[sessionid], 'reverse_transforms', LinearSubjectToAtlasANTsApplyTransforms[sessionid], 'transforms')
baw200.connect(AtlasToSubjectantsRegistration[sessionid], 'reverse_invert_flags', LinearSubjectToAtlasANTsApplyTransforms[sessionid], 'invert_transform_flags')
baw200.connect(BAtlas[subjectid], 'template_t1', LinearSubjectToAtlasANTsApplyTransforms[sessionid], 'reference_image')
baw200.connect(MergeSessionSubjectToAtlas[sessionid], 'out', LinearSubjectToAtlasANTsApplyTransforms[sessionid], 'input_image')
MergeMultiLabelSessionSubjectToAtlasName = "99_MergeMultiLabelSessionSubjectToAtlas_" + str(sessionid)
MergeMultiLabelSessionSubjectToAtlas[sessionid] = pe.Node(interface=Merge(2),
run_without_submitting=True,
name=MergeMultiLabelSessionSubjectToAtlasName)
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.outputLabels', MergeMultiLabelSessionSubjectToAtlas[sessionid], 'in1')
baw200.connect(PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.outputHeadLabels', MergeMultiLabelSessionSubjectToAtlas[sessionid], 'in2')
### This is taking this sessions RF label map back into NAC atlas space.
#{
MultiLabelSubjectToAtlasANTsApplyTransformsName = 'MultiLabelSubjectToAtlasANTsApplyTransforms_' + str(sessionid)
MultiLabelSubjectToAtlasANTsApplyTransforms[sessionid] = pe.MapNode(interface=ApplyTransforms(), iterfield=['input_image'], name=MultiLabelSubjectToAtlasANTsApplyTransformsName)
MultiLabelSubjectToAtlasANTsApplyTransforms[sessionid].plugin_args = {'template': SGE_JOB_SCRIPT, 'qsub_args': '-S /bin/bash -cwd -pe smp1 1 -l mem_free=1000M -o /dev/null -e /dev/null {QUEUE_OPTIONS}'.format(QUEUE_OPTIONS=CLUSTER_QUEUE), 'overwrite': True}
MultiLabelSubjectToAtlasANTsApplyTransforms[sessionid].inputs.interpolation = 'MultiLabel'
baw200.connect(AtlasToSubjectantsRegistration[sessionid], 'reverse_transforms', MultiLabelSubjectToAtlasANTsApplyTransforms[sessionid], 'transforms')
baw200.connect(AtlasToSubjectantsRegistration[sessionid], 'reverse_invert_flags', MultiLabelSubjectToAtlasANTsApplyTransforms[sessionid], 'invert_transform_flags')
baw200.connect(BAtlas[subjectid], 'template_t1', MultiLabelSubjectToAtlasANTsApplyTransforms[sessionid], 'reference_image')
baw200.connect(MergeMultiLabelSessionSubjectToAtlas[sessionid], 'out', MultiLabelSubjectToAtlasANTsApplyTransforms[sessionid], 'input_image')
#}
### Now we must take the sessions to THIS SUBJECTS personalized atlas.
#{
#}
### Now define where the final organized outputs should go.
Subj2Atlas_DSName = "SubjectToAtlas_DS_" + str(sessionid)
Subj2Atlas_DS[sessionid] = pe.Node(nio.DataSink(), name=Subj2Atlas_DSName)
Subj2Atlas_DS[sessionid].overwrite = GLOBAL_DATA_SINK_REWRITE
Subj2Atlas_DS[sessionid].inputs.base_directory = ExperimentBaseDirectoryResults
# Subj2Atlas_DS[sessionid].inputs.regexp_substitutions = GenerateSubjectOutputPattern(subjectid)
Subj2Atlas_DS[sessionid].inputs.regexp_substitutions = [
(r'_LinearSubjectToAtlasANTsApplyTransforms_[^/]*', r'' + sessionid + '/')
]
baw200.connect(LinearSubjectToAtlasANTsApplyTransforms[sessionid], 'output_image', Subj2Atlas_DS[sessionid], 'SubjectToAtlasWarped.@linear_output_images')
# baw200.connect(MultiLabelSubjectToAtlasANTsApplyTransforms[sessionid],'output_image',Subj2Atlas_DS[sessionid],'SubjectToAtlasWarped.@multilabel_output_images')
print("HACK: DEBUGGING HERE")
### STAPLE continued...
### merge transforms and lables for STAPLE
mergeSTAPLEInputNo = 'in' + str( allSessions.index( sessionid) +1 )
baw200.connect( PHASE_2_oneSubjWorkflow[sessionid], 'outputspec.TissueClassifyatlasToSubjectTransform',