forked from BRAINSia/BRAINSStandAlone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathShortWorkupT1T2.py
435 lines (394 loc) · 24.4 KB
/
ShortWorkupT1T2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#!/usr/bin/python
#################################################################################
## Program: BRAINS (Brain Research: Analysis of Images, Networks, and Systems)
## Language: Python
##
## Author: Hans J. Johnson
##
## This software is distributed WITHOUT ANY WARRANTY; without even
## the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the above copyright notices for more information.
##
#################################################################################
import os
import csv
import sys
import string
import argparse
#"""Import necessary modules from nipype."""
# from nipype.utils.config import config
# config.set('logging', 'log_to_file', 'false')
# config.set_log_dir(os.getcwd())
#--config.set('logging', 'workflow_level', 'DEBUG')
#--config.set('logging', 'interface_level', 'DEBUG')
#--config.set('execution','remove_unnecessary_outputs','false')
from nipype.interfaces.base import CommandLine, CommandLineInputSpec, TraitedSpec, File, Directory
from nipype.interfaces.base import traits, isdefined, BaseInterface
from nipype.interfaces.utility import Merge, Split, Function, Rename, IdentityInterface
import nipype.interfaces.io as nio # Data i/o
import nipype.pipeline.engine as pe # pypeline engine
from nipype.interfaces.freesurfer import ReconAll
from nipype.utils.misc import package_check
# package_check('nipype', '5.4', 'tutorial1') ## HACK: Check nipype version
package_check('numpy', '1.3', 'tutorial1')
package_check('scipy', '0.7', 'tutorial1')
package_check('networkx', '1.0', 'tutorial1')
package_check('IPython', '0.10', 'tutorial1')
from SEMTools import *
from WorkupT1T2AtlasNode import MakeAtlasNode
from PipeLineFunctionHelpers import getListIndex
# HACK: [('buildTemplateIteration2', 'SUBJECT_TEMPLATES/0249/buildTemplateIteration2')]
def GenerateSubjectOutputPattern(subjectid):
""" This function generates output path substitutions for workflows and nodes that conform to a common standard.
HACK: [('ANTSTemplate/Iteration02_Reshaped.nii.gz', 'SUBJECT_TEMPLATES/0668/T1_RESHAPED.nii.gz'),
('ANTSTemplate/_ReshapeAveragePassiveImageWithShapeUpdate[0-9]*', 'SUBJECT_TEMPLATES/0668')]
subs=r'test/\g<project>/\g<subject>/\g<session>'
pe.sub(subs,test)
pat=r'foo/_uid_(?P<project>PHD_[0-9][0-9][0-9])_(?P<subject>[0-9][0-9][0-9][0-9])_(?P<session>[0-9][0-9][0-9][0-9][0-9])'
pe=re.compile(pat)
pe.sub(subs,test)
test
test='foo/_uid_PHD_024_0003_12345'
pe.sub(subs,test)
pat=r'(?P<modulename>[^/]*)/_uid_(?P<project>PHD_[0-9][0-9][0-9])_(?P<subject>[0-9][0-9][0-9][0-9])_(?P<session>[0-9][0-9][0-9][0-9][0-9])'
subs=r'test/\g<project>/\g<subject>/\g<session>/\g<modulename>'
pe.sub(subs,test)
pe=re.compile(pat)
pe.sub(subs,test)
"""
patternList = []
find_pat = os.path.join('ANTSTemplate', 'Iteration02_Reshaped.nii.gz')
replace_pat = os.path.join('SUBJECT_TEMPLATES', subjectid, r'AVG_T1.nii.gz')
patternList.append((find_pat, replace_pat))
find_pat = os.path.join('ANTSTemplate', r'_ReshapeAveragePassiveImageWithShapeUpdate[0-9]*/AVG_[A-Z0-9]*WARP_(?P<structure>AVG_[A-Z0-9]*.nii.gz)')
replace_pat = os.path.join('SUBJECT_TEMPLATES', subjectid, r'\g<structure>')
patternList.append((find_pat, replace_pat))
find_pat = os.path.join('ANTSTemplate', r'CLIPPED_AVG_[A-Z]*WARP_(?P<structure>AVG_[A-Z]*.nii.gz)')
replace_pat = os.path.join('SUBJECT_TEMPLATES', subjectid, r'\g<structure>')
patternList.append((find_pat, replace_pat))
print "HACK: ", patternList
return patternList
def GenerateOutputPattern(projectid, subjectid, sessionid, DefaultNodeName):
""" This function generates output path substitutions for workflows and nodes that conform to a common standard.
"""
patternList = []
find_pat = os.path.join(DefaultNodeName)
replace_pat = os.path.join(projectid, subjectid, sessionid, DefaultNodeName)
patternList.append((find_pat, replace_pat))
print "HACK: ", patternList
return patternList
def GenerateAccumulatorImagesOutputPattern(projectid, subjectid, sessionid):
""" This function generates output path substitutions for workflows and nodes that conform to a common standard.
"""
patternList = []
find_pat = "POSTERIOR_"
replace_pat = os.path.join(projectid, subjectid, sessionid) + "/POSTERIOR_"
patternList.append((find_pat, replace_pat))
print "HACK: ", patternList
return patternList
## This takes several lists and merges them, but it also removes all empty values from the lists
def MergeByExtendListElements(t2_averageList, pd_averageList, fl_averageList, outputLabels_averageList, ListOfPosteriorImagesDictionary):
for t2_index in range(0, len(t2_averageList)):
if t2_averageList[t2_index] is not None:
ListOfPosteriorImagesDictionary[t2_index]['T2'] = t2_averageList[t2_index]
if pd_averageList[t2_index] is not None:
ListOfPosteriorImagesDictionary[t2_index]['PD'] = pd_averageList[t2_index]
if fl_averageList[t2_index] is not None:
ListOfPosteriorImagesDictionary[t2_index]['FL'] = fl_averageList[t2_index]
if outputLabels_averageList[t2_index] is not None:
ListOfPosteriorImagesDictionary[t2_index]['BRAINMASK'] = outputLabels_averageList[t2_index]
return ListOfPosteriorImagesDictionary
def MakeNewAtlasTemplate(t1_image, deformed_list,
AtlasTemplate, outDefinition):
import os
import sys
import SimpleITK as sitk
patternDict = {
'AVG_AIRWARP_AVG_AIR.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_AIR.nii.gz',
'AVG_BGMWARP_AVG_BGM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_BASALTISSUE.nii.gz',
'AVG_CRBLGMWARP_AVG_CRBLGM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_CRBLGM.nii.gz',
'AVG_CRBLWMWARP_AVG_CRBLWM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_CRBLWM.nii.gz',
'AVG_CSFWARP_AVG_CSF.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_CSF.nii.gz',
'AVG_NOTCSFWARP_AVG_NOTCSF.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_NOTCSF.nii.gz',
'AVG_NOTGMWARP_AVG_NOTGM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_NOTGM.nii.gz',
'AVG_NOTVBWARP_AVG_NOTVB.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_NOTVB.nii.gz',
'AVG_NOTWMWARP_AVG_NOTWM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_NOTWM.nii.gz',
'AVG_SURFGMWARP_AVG_SURFGM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_SURFGM.nii.gz',
'AVG_VBWARP_AVG_VB.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_VB.nii.gz',
'AVG_WMWARP_AVG_WM.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_WM.nii.gz',
'AVG_ACCUMBENWARP_AVG_ACCUMBEN.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_ACCUMBEN.nii.gz',
'AVG_CAUDATEWARP_AVG_CAUDATE.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_CAUDATE.nii.gz',
'AVG_PUTAMENWARP_AVG_PUTAMEN.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_PUTAMEN.nii.gz',
'AVG_GLOBUSWARP_AVG_GLOBUS.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_GLOBUS.nii.gz',
'AVG_THALAMUSWARP_AVG_THALAMUS.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_THALAMUS.nii.gz',
'AVG_HIPPOCAMPUSWARP_AVG_HIPPOCAMPUS.nii.gz': '@ATLAS_DIRECTORY@/EXTENDED_HIPPOCAMPUS.nii.gz',
'AVG_T2WARP_AVG_T2.nii.gz': '@ATLAS_DIRECTORY@/template_t2.nii.gz',
'AVG_BRAINMASKWARP_AVG_BRAINMASK.nii.gz': '@ATLAS_DIRECTORY@/template_brain.nii.gz',
'T1_RESHAPED.nii.gz': '@ATLAS_DIRECTORY@/template_t1.nii.gz'
}
templateFile = open(AtlasTemplate, 'r')
content = templateFile.read() # read entire file into memory
templateFile.close()
## Now clean up the posteriors based on anatomical knowlege.
## sometimes the posteriors are not relevant for priors
## due to anomolies around the edges.
load_images_list = dict()
for full_pathname in deformed_list:
base_name = os.path.basename(full_pathname)
if base_name in patternDict.keys():
load_images_list[base_name] = sitk.ReadImage(full_pathname)
## Make binary dilated mask
binmask = sitk.BinaryThreshold(load_images_list['AVG_BRAINMASKWARP_AVG_BRAINMASK.nii.gz'], 1, 1000000)
dilated5 = sitk.DilateObjectMorphology(binmask, 5)
dilated5 = sitk.Cast(dilated5, sitk.sitkFloat32) # Convert to Float32 for multiply
## Now clip the interior brain mask with dilated5
interiorPriors = [
'AVG_BGMWARP_AVG_BGM.nii.gz',
'AVG_CRBLGMWARP_AVG_CRBLGM.nii.gz',
'AVG_CRBLWMWARP_AVG_CRBLWM.nii.gz',
'AVG_CSFWARP_AVG_CSF.nii.gz',
'AVG_SURFGMWARP_AVG_SURFGM.nii.gz',
'AVG_VBWARP_AVG_VB.nii.gz',
'AVG_WMWARP_AVG_WM.nii.gz',
'AVG_ACCUMBENWARP_AVG_ACCUMBEN.nii.gz',
'AVG_CAUDATEWARP_AVG_CAUDATE.nii.gz',
'AVG_PUTAMENWARP_AVG_PUTAMEN.nii.gz',
'AVG_GLOBUSWARP_AVG_GLOBUS.nii.gz',
'AVG_THALAMUSWARP_AVG_THALAMUS.nii.gz',
'AVG_HIPPOCAMPUSWARP_AVG_HIPPOCAMPUS.nii.gz',
]
clean_deformed_list = deformed_list
for index in range(0, len(deformed_list)):
full_pathname = deformed_list[index]
base_name = os.path.basename(full_pathname)
if base_name == 'AVG_BRAINMASKWARP_AVG_BRAINMASK.nii.gz':
### Make Brain Mask Binary
clipped_name = 'CLIPPED_' + base_name
patternDict[clipped_name] = patternDict[base_name]
sitk.WriteImage(binmask, clipped_name)
clean_deformed_list[index] = os.path.realpath(clipped_name)
if base_name in interiorPriors:
### Make clipped posteriors for brain regions
curr = sitk.Cast(sitk.ReadImage(full_pathname), sitk.sitkFloat32)
curr = curr * dilated5
clipped_name = 'CLIPPED_' + base_name
patternDict[clipped_name] = patternDict[base_name]
sitk.WriteImage(curr, clipped_name)
clean_deformed_list[index] = os.path.realpath(clipped_name)
print "HACK: ", clean_deformed_list[index]
curr = None
binmask = None
dilated5 = None
for full_pathname in clean_deformed_list:
base_name = os.path.basename(full_pathname)
if base_name in patternDict.keys():
content = content.replace(patternDict[base_name], full_pathname)
content = content.replace('@ATLAS_DIRECTORY@/template_t1.nii.gz', t1_image)
## NOTE: HEAD REGION CAN JUST BE T1 image.
content = content.replace('@ATLAS_DIRECTORY@/template_headregion.nii.gz', t1_image)
## NOTE: BRAIN REGION CAN JUST BE the label images.
outAtlasFullPath = os.path.realpath(outDefinition)
newFile = open(outAtlasFullPath, 'w')
newFile.write(content) # write the file with the text substitution
newFile.close()
return outAtlasFullPath, clean_deformed_list
def AccumulateLikeTissuePosteriors(posteriorImages):
import os
import sys
import SimpleITK as sitk
## Now clean up the posteriors based on anatomical knowlege.
## sometimes the posteriors are not relevant for priors
## due to anomolies around the edges.
load_images_list = dict()
for full_pathname in posteriorImages.values():
base_name = os.path.basename(full_pathname)
load_images_list[base_name] = sitk.ReadImage(full_pathname)
GM_ACCUM = [
'POSTERIOR_ACCUMBEN.nii.gz',
'POSTERIOR_CAUDATE.nii.gz',
'POSTERIOR_CRBLGM.nii.gz',
'POSTERIOR_HIPPOCAMPUS.nii.gz',
'POSTERIOR_PUTAMEN.nii.gz',
'POSTERIOR_THALAMUS.nii.gz',
'POSTERIOR_SURFGM.nii.gz',
]
WM_ACCUM = [
'POSTERIOR_CRBLWM.nii.gz',
'POSTERIOR_WM.nii.gz'
]
CSF_ACCUM = [
'POSTERIOR_CSF.nii.gz',
]
VB_ACCUM = [
'POSTERIOR_VB.nii.gz',
]
GLOBUS_ACCUM = [
'POSTERIOR_GLOBUS.nii.gz',
]
BACKGROUND_ACCUM = [
'POSTERIOR_AIR.nii.gz',
'POSTERIOR_NOTCSF.nii.gz',
'POSTERIOR_NOTGM.nii.gz',
'POSTERIOR_NOTVB.nii.gz',
'POSTERIOR_NOTWM.nii.gz',
]
## The next 2 items MUST be syncronized
AccumulatePriorsNames = ['POSTERIOR_GM_TOTAL.nii.gz', 'POSTERIOR_WM_TOTAL.nii.gz',
'POSTERIOR_CSF_TOTAL.nii.gz', 'POSTERIOR_VB_TOTAL.nii.gz',
'POSTERIOR_GLOBUS_TOTAL.nii.gz', 'POSTERIOR_BACKGROUND_TOTAL.nii.gz']
ForcedOrderingLists = [GM_ACCUM, WM_ACCUM, CSF_ACCUM, VB_ACCUM, GLOBUS_ACCUM, BACKGROUND_ACCUM]
AccumulatePriorsList = list()
for index in range(0, len(ForcedOrderingLists)):
outname = AccumulatePriorsNames[index]
inlist = ForcedOrderingLists[index]
accum_image = load_images_list[inlist[0]] # copy first image
for curr_image in range(1, len(inlist)):
accum_image = accum_image + load_images_list[inlist[curr_image]]
sitk.WriteImage(accum_image, outname)
AccumulatePriorsList.append(os.path.realpath(outname))
print "HACK \n\n\n\n\n\n\n HACK \n\n\n: {APL}\n".format(APL=AccumulatePriorsList)
print ": {APN}\n".format(APN=AccumulatePriorsNames)
return AccumulatePriorsList, AccumulatePriorsNames
###########################################################################
###########################################################################
###########################################################################
###########################################################################
###########################################################################
###########################################################################
## WorkupT1T2 is the main workflow to be run
###########################################################################
###########################################################################
###########################################################################
###########################################################################
###########################################################################
def ShortWorkupT1T2(subjectid, mountPrefix, ExperimentBaseDirectoryCache, ExperimentBaseDirectoryResults, ExperimentDatabase, atlas_fname_wpath, BCD_model_path,
GLOBAL_DATA_SINK_REWRITE,
InterpolationMode="Linear", Mode=10, DwiList=[], WORKFLOW_COMPONENTS=[], CLUSTER_QUEUE='', CLUSTER_QUEUE_LONG=''):
"""
Run autoworkup on all subjects data defined in the ExperimentDatabase
This is the main function to call when processing a data set with T1 & T2
data. ExperimentBaseDirectoryPrefix is the base of the directory to place results, T1Images & T2Images
are the lists of images to be used in the auto-workup. atlas_fname_wpath is
the path and filename of the atlas to use.
"""
print "Building Pipeline"
########### PIPELINE INITIALIZATION #############
baw200 = pe.Workflow(name="BAW_20120813")
baw200.config['execution'] = {
'plugin': 'Linear',
#'stop_on_first_crash':'true',
#'stop_on_first_rerun': 'true',
'stop_on_first_crash': 'false',
'stop_on_first_rerun': 'false', # This stops at first attempt to rerun, before running, and before deleting previous results.
'hash_method': 'timestamp',
'single_thread_matlab': 'true', # Multi-core 2011a multi-core for matrix multiplication.
'remove_unnecessary_outputs': 'false',
'use_relative_paths': 'false', # relative paths should be on, require hash update when changed.
'remove_node_directories': 'false', # Experimental
'local_hash_check': 'true',
'job_finished_timeout': 15
}
baw200.config['logging'] = {
'workflow_level': 'DEBUG',
'filemanip_level': 'DEBUG',
'interface_level': 'DEBUG',
'log_directory': ExperimentBaseDirectoryCache
}
baw200.base_dir = ExperimentBaseDirectoryCache
import WorkupT1T2Single
MergeT1s = dict()
MergeT2s = dict()
MergePDs = dict()
MergeFLs = dict()
MergeOutputLabels = dict()
MergePosteriors = dict()
BAtlas = dict()
if True:
print("===================== SUBJECT: {0} ===========================".format(subjectid))
PHASE_1_oneSubjWorkflow = dict()
PHASE_1_subjInfoNode = dict()
allSessions = ExperimentDatabase.getSessionsFromSubject(subjectid)
print("Running sessions: {ses} for subject {sub}".format(ses=allSessions, sub=subjectid))
BAtlas[subjectid] = MakeAtlasNode(atlas_fname_wpath, "BAtlas_" + str(subjectid)) # Call function to create node
for sessionid in allSessions:
global_AllT1s = ExperimentDatabase.getFilenamesByScantype(sessionid, ['T1-30', 'T1-15'])
global_AllT2s = ExperimentDatabase.getFilenamesByScantype(sessionid, ['T2-30', 'T2-15'])
global_AllPDs = ExperimentDatabase.getFilenamesByScantype(sessionid, ['PD-30', 'PD-15'])
global_AllFLs = ExperimentDatabase.getFilenamesByScantype(sessionid, ['FL-30', 'FL-15'])
global_AllOthers = ExperimentDatabase.getFilenamesByScantype(sessionid, ['OTHER-30', 'OTHER-15'])
print("HACK: all T1s: {0} {1}".format(global_AllT1s, len(global_AllT1s)))
print("HACK: all T2s: {0} {1}".format(global_AllT2s, len(global_AllT2s)))
print("HACK: all PDs: {0} {1}".format(global_AllPDs, len(global_AllPDs)))
print("HACK: all FLs: {0} {1}".format(global_AllFLs, len(global_AllFLs)))
print("HACK: all Others: {0} {1}".format(global_AllOthers, len(global_AllOthers)))
projectid = ExperimentDatabase.getProjFromSession(sessionid)
print("PROJECT: {0} SUBJECT: {1} SESSION: {2}".format(projectid, subjectid, sessionid))
PHASE_1_subjInfoNode[sessionid] = pe.Node(interface=IdentityInterface(fields=
['sessionid', 'subjectid', 'projectid',
'allT1s',
'allT2s',
'allPDs',
'allFLs',
'allOthers']),
run_without_submitting=True,
name='99_PHASE_1_SubjInfoNode_' + str(subjectid) + "_" + str(sessionid))
PHASE_1_subjInfoNode[sessionid].inputs.projectid = projectid
PHASE_1_subjInfoNode[sessionid].inputs.subjectid = subjectid
PHASE_1_subjInfoNode[sessionid].inputs.sessionid = sessionid
PHASE_1_subjInfoNode[sessionid].inputs.allT1s = global_AllT1s
PHASE_1_subjInfoNode[sessionid].inputs.allT2s = global_AllT2s
PHASE_1_subjInfoNode[sessionid].inputs.allPDs = global_AllPDs
PHASE_1_subjInfoNode[sessionid].inputs.allFLs = global_AllFLs
PHASE_1_subjInfoNode[sessionid].inputs.allOthers = global_AllOthers
PROCESSING_PHASE = 'PHASE_1'
PHASE_1_WORKFLOW_COMPONENTS = ['BASIC', 'TISSUE_CLASSIFY']
PHASE_1_oneSubjWorkflow[sessionid] = WorkupT1T2Single.MakeOneSubWorkFlow(
projectid, subjectid, sessionid, PROCESSING_PHASE,
PHASE_1_WORKFLOW_COMPONENTS,
BCD_model_path, InterpolationMode, CLUSTER_QUEUE, CLUSTER_QUEUE_LONG)
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'projectid', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.projectid')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'subjectid', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.subjectid')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'sessionid', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.sessionid')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'allT1s', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.allT1s')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'allT2s', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.allT2s')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'allPDs', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.allPDs')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'allFLs', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.allFLs')
baw200.connect(PHASE_1_subjInfoNode[sessionid], 'allOthers', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.allOthers')
baw200.connect(BAtlas[subjectid], 'template_landmarks_31_fcsv', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.template_landmarks_31_fcsv')
baw200.connect(BAtlas[subjectid], 'template_landmark_weights_31_csv', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.template_landmark_weights_31_csv')
baw200.connect(BAtlas[subjectid], 'template_t1', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.template_t1')
baw200.connect(BAtlas[subjectid], 'ExtendedAtlasDefinition_xml', PHASE_1_oneSubjWorkflow[sessionid], 'inputspec.atlasDefinition')
BASIC_DataSink = dict()
TC_DataSink = dict()
AccumulateLikeTissuePosteriorsNode = dict()
AddLikeTissueSink = dict()
if True:
### Now define where the final organized outputs should go.
BASIC_DataSink[sessionid] = pe.Node(nio.DataSink(), name="BASIC_DS_" + str(subjectid) + "_" + str(sessionid))
BASIC_DataSink[sessionid].inputs.base_directory = ExperimentBaseDirectoryResults
BASIC_DataSink[sessionid].inputs.regexp_substitutions = GenerateOutputPattern(projectid, subjectid, sessionid, 'ACPCAlign')
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.outputLandmarksInACPCAlignedSpace', BASIC_DataSink[sessionid], 'ACPCAlign.@outputLandmarksInACPCAlignedSpace')
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.BCD_ACPC_T1', BASIC_DataSink[sessionid], 'ACPCAlign.@BCD_ACPC_T1')
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.outputLandmarksInInputSpace', BASIC_DataSink[sessionid], 'ACPCAlign.@outputLandmarksInInputSpace')
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.outputTransform', BASIC_DataSink[sessionid], 'ACPCAlign.@outputTransform')
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.atlasToSubjectTransform', BASIC_DataSink[sessionid], 'ACPCAlign.@atlasToSubjectTransform')
### Now define where the final organized outputs should go.
TC_DataSink[sessionid] = pe.Node(nio.DataSink(), name="TISSUE_CLASSIFY_DS_" + str(subjectid) + "_" + str(sessionid))
TC_DataSink[sessionid].inputs.base_directory = ExperimentBaseDirectoryResults
TC_DataSink[sessionid].inputs.regexp_substitutions = GenerateOutputPattern(projectid, subjectid, sessionid, 'TissueClassify')
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.TissueClassifyOutputDir', TC_DataSink[sessionid], 'TissueClassify.@TissueClassifyOutputDir')
### Now clean up by adding together many of the items PHASE_1_oneSubjWorkflow
currentAccumulateLikeTissuePosteriorsName = 'AccumulateLikeTissuePosteriors_' + str(subjectid) + "_" + str(sessionid)
AccumulateLikeTissuePosteriorsNode[sessionid] = pe.Node(interface=Function(function=AccumulateLikeTissuePosteriors,
input_names=['posteriorImages'],
output_names=['AccumulatePriorsList', 'AccumulatePriorsNames']),
name=currentAccumulateLikeTissuePosteriorsName)
baw200.connect(PHASE_1_oneSubjWorkflow[sessionid], 'outputspec.posteriorImages',
AccumulateLikeTissuePosteriorsNode[sessionid], 'posteriorImages')
### Now define where the final organized outputs should go.
AddLikeTissueSink[sessionid] = pe.Node(nio.DataSink(), name="ACCUMULATED_POSTERIORS_" + str(subjectid) + "_" + str(sessionid))
AddLikeTissueSink[sessionid].inputs.base_directory = ExperimentBaseDirectoryResults
# AddLikeTissueSink[sessionid].inputs.regexp_substitutions = GenerateAccumulatorImagesOutputPattern(projectid, subjectid, sessionid)
AddLikeTissueSink[sessionid].inputs.regexp_substitutions = GenerateOutputPattern(projectid, subjectid, sessionid, 'ACCUMULATED_POSTERIORS')
baw200.connect(AccumulateLikeTissuePosteriorsNode[sessionid], 'AccumulatePriorsList', AddLikeTissueSink[sessionid], 'ACCUMULATED_POSTERIORS.@AccumulateLikeTissuePosteriorsOutputDir')
return baw200