-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathyolov8.m
1188 lines (999 loc) · 46.2 KB
/
yolov8.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% yolov8 Create a YOLO V8 network for instance segmentation.
%
% detector = yolov8(detectorName) loads a pretrained YOLO V8 instance
% segmentation detector trained on the COCO dataset. The detectorName
% specifies the architecture of the pre-trained network. detectorName must
% be either 'yolov8n', 'yolov8s', 'yolov8n', 'yolov8l', 'yolov8x'.
%
% Inputs:
% -------
% detectorName Specify the name of the pretrained YOLO v8 deep learning
% model as a string or character vector. The value must
% be one of the following:
%
% 'yolov8n' Use this model for speed and efficiency.
%
% 'yolov8s' Use this model for a balance between speed
% and accuracy, suitable for applications
% requiring real-time performance with good
% segmentation quality.
%
% 'yolov8m' Use this model for higher accuracy with
% moderate computational demands.
%
% 'yolov8l' Use this model to prioritize maximum
% segmentation accuracy for high-end systems,
% at the cost of computational intensity.
%
% 'yolov8x' Use this model to get most accurate
% segmentation but requires significant
% computational resources, ideal for high-end
% systems prioritizing segmentation
% performance.
%
% Additional input arguments
% ----------------------------
% [...] = yolov8(..., Name=Value) specifies additional name-value pair
% arguments to configure the pre-trained YOLO v8 network as described below:
%
% "ModelName" Detector name specified as string or character
% vector.
%
% Default: detectorName or specified detectorName
%
%
% "InputSize" Specify the image sizes to use for detection. The
% segmentObjects method resizes input images
% to this size in the detector while maintaining the
% aspect ratio.
%
% Default: network input size
%
% yolov8 object properties
% --------------------------
% ModelName - Name of the trained yolov8 network.
% Network - YOLO v8 instance segmentation network. (read-only)
% ClassNames - A string array of object class names. (read-only)
% InputSize - The image size used during training. (read-only)
%
% yolov8 object methods
% -----------------------
% segmentObjects - Segment object instances in an image.
%
% Example - Segment instances using pre-trained YOLO V8
% -------------------------------------------------------
%
% I = imread('visionteam.jpg');
%
% % Load pre-trained YOLO v8 network
% detector = yolov8('yolov8m');
%
% % Run inference on the YOLO v8 network
% [masks,labels,scores] = segmentObjects(detector,I);
%
% % Visualize the results
% % Overlay the object masks on the input image
% overlayedImage = insertObjectMask(I, masks);
% figure, imshow(overlayedImage)
%
% See also segmentObjects, solov2, maskrcnn, evaluateInstanceSegmentation,
% insertObjectMask.
% Copyright 2025 The MathWorks, Inc.
classdef yolov8
% Publicly visible YOLO v8 properties
properties(SetAccess=protected)
% Network is a dlnetwork object with image input layer.
Network
% Custom model name
ModelName
% Class names the network is trained on
ClassNames
% Image Size which the network is trained on
InputSize
end
properties(Dependent = true)
% NormalizationStatistics specifies z-score normalization statitics
% as a structure with fields, Mean and StandardDeviation specified
% as 1-by-C array of means and standard deviation per channel. The
% number of channels, C must match the InputSize
NormalizationStatistics
end
properties (Access = private, Hidden)
NormalizationStatisticsInternal = [];
end
methods(Access=public)
function obj = yolov8(detector, classNames,options)
arguments
detector {isOneOrMoreType} = iGetSmallNetworkDetectorName();
classNames = [];
options.InputSize {mustBeNumeric, mustBePositive, mustBeReal, mustBeFinite, mustBeRGBSize} = []
options.ModelName {mustBeTextScalar} = ""
options.NormalizationStatistics = []
end
vision.internal.requiresNeuralToolbox(mfilename);
options.customNetwork = isequal(class(detector),'dlnetwork');
% This is added to support load network workflows all the
% weights and properties will be populated by the loadobj
% method.
if (~options.customNetwork && detector == "uninitialized")
return;
end
% Loads and configure the pretrained model as specified in detectorName.
params = yolov8.parsePretrainedDetectorInputs(detector,classNames,options);
if options.customNetwork
obj.Network = detector;
else
obj.Network = iDownloadAndUpdatePretrainedModels(detector, params);
end
obj.InputSize = params.InputSize;
if isempty(params.NormalizationStatistics)
obj.NormalizationStatistics = iDefaultNormalizationStats(obj.InputSize(3));
else
obj.NormalizationStatistics = params.NormalizationStatistics;
end
if ~isfield(params,"ClassNames")
obj.ClassNames = helper.getCOCOClassNames;
else
obj.ClassNames = params.ClassNames;
end
obj.InputSize = params.InputSize;
obj.ModelName = params.ModelName;
obj.Network = initialize(obj.Network);
end
end
methods(Static, Hidden, Access = protected)
%------------------------------------------------------------------
% Parse and validate pretrained segmentor parameters.
%------------------------------------------------------------------
function params = parsePretrainedDetectorInputs(detectorInp,classNames,options)
% Parse inputs for this syntax:
% detector = yolov8(detectorName).
params = options;
if ~isequal(class(detectorInp),'dlnetwork')
params.DetectorName = detectorInp;
inputSize = [640 640 3];
else
params.DetectorName = 'custom';
inputSize = detectorInp.Layers(1,1).InputSize;
end
% Parse inputs for this syntax:
% detector = yolov8(detectorName,classNames).
if isempty(classNames) && ~isempty(options.InputSize)
error('classNames must be specified to configure detector for training using InputSize');
end
if ~isempty(classNames)
params.ClassNames = classNames;
if ~iscolumn(params.ClassNames)
params.ClassNames = params.ClassNames';
end
if isstring(params.ClassNames) || iscategorical(params.ClassNames)
params.ClassNames = cellstr(params.ClassNames);
end
iValidateClassNames(params.ClassNames);
end
if isempty(options.InputSize)
params.InputSize = inputSize;
params.UpdateInputLayer = false;
else
params.UpdateInputLayer = true;
end
iCheckInputSize(params.InputSize);
if params.InputSize(1) == 1 || params.InputSize(2) == 1
error(message('visualinspection:yoloxObjectDetector:inputSizeMustBeAtleastTwo',params.DetectorName));
end
if strcmp(params.ModelName,"")
params.ModelName = params.DetectorName;
end
if ~isempty(params.NormalizationStatistics)
iValidateNormalizationStats(params.NormalizationStatistics,params.InputSize(3))
end
end
end
methods (Hidden)
function this = setInputNormalization(this,stats)
network = this.Network;
currentInputLayer = this.Network.Layers(1);
map = normalizationStatsDictionary(stats);
statsSet = map(currentInputLayer.Normalization);
inputSize = size(getExampleInputsFromNetwork(this.Network));
newInputLayer = imageInputLayer(inputSize,"Name",currentInputLayer.Name,...
"Normalization",currentInputLayer.Normalization,...
statsSet{:});
network = replaceLayer(network,this.Network.Layers(1).Name,newInputLayer);
this.Network = initialize(network);
end
end
methods(Access=public)
function varargout = segmentObjects(obj, im, options)
%SEGMENTOBJECTS Segment objects in an image using YOLO v8
% instance segmentation network.
%
% masks = segmentObjects(yolov8Obj,I) returns object masks
% within the image I using the trained yolov8 network. The
% objects masks are detected as a H-by-W-by-M logical array,
% where each channel contains the mask for a single object. H
% and W are the height and width of the input image I and M is
% the number of objects detected in the image. yolov8Obj is an
% object of the yolov8 class and I is an RGB or grayscale
% image.
%
% masks = segmentObjects(yolov8Obj,IBatch) returns objects
% within each image contained in the batch of images IBatch.
% IBatch is a numeric array containing images in the format
% H-by-W-by-C-by-B, where B is the number of images in the
% batch, and C is the channel size. For grayscale images, C
% must be 1. masks is a B-by-1 cell array, with each cell
% containing an H-by-W-by-M array of object masks for each
% image in the batch, B.
%
% [masks, labels] = segmentObjects(yolov8Obj,I) optionally
% returns the labels assigned to the detected M objects as an
% M-by-1 categorical array. labels is a B-by-1 cell array, if
% the input I is a batch of images of the format
% H-by-W-by-C-by-B.
%
% [masks, labels, scores] = segmentObjects(yolov8Obj,I)
% optionally return the detection scores for each of the M
% objects. The score for each detection is the product of the
% classification score and maskness score. The range of the
% score is [0 1]. Larger score values indicate higher
% confidence in the detection. scores is a B-by-1 cell array,
% if the input I is a batch of images of the format
% H-by-W-by-C-by-B.
%
% [masks, labels, scores, boxes] = segmentObjects(yolov8Obj,I)
% optionally return location of objects within I in M-by-4
% matrix defining M bounding boxes. Each row of axis-aligned
% bboxes contain a four-element vector, [x, y, width, height].
% This vector specifies the upper-left corner and size of a
% bounding box in pixels.
%
% outds = segmentObjects(yolov8Obj, imds,___) returns the
% instance segmentation results for images stored in a
% Datastore imds. The output of read(ds) must be an image array
% or a cell array. When the output of read(ds) is a cell array,
% then only the first column of data is processed by the
% network. The output outds is a fileDatastore representing the
% instance segmentation results. The result for each image -
% object masks, labels, scores and bounding boxes are stored in
% a .MAT file at the location specified by 'WriteLocation'. A
% read on the outds returns these outputs in the following
% order:
%
% 1st cell : Predicted logical object masks for M objects as a
% H-by-W-by-M logical array.
% 2nd cell : Predicted object labels as a Mx1 categorical vector.
%
% 3rd cell : Prediction scores as a Mx1 numeric vector.
%
% 4th cell : Prediction boxes as a Mx4 numeric vector.
%
% [...] = segmentObjects(..., Name=Value) specifies additional
% name-value pairs described below:
%
% 'Threshold' A scalar between 0 and 1. Detections
% with scores less than the threshold
% value are removed. Increase this value
% to reduce false positives.
%
% Default: 0.5
%
% 'SelectStrongest' A logical scalar. Set this to true to
% eliminate overlapping object masks
% based on their scores. This process is
% often referred to as non-maximum
% suppression. Set this to false if you
% want to perform a custom selection
% operation. When set to false, all the
% segmented masks are returned.
%
% Default: true
%
% 'ExecutionEnvironment' Specify what hardware resources will be used to
% run the YOLO v8 detector. Valid values for
% resource are:
%
% 'auto' - Use a GPU if it is available, otherwise
% use the CPU.
%
% 'gpu' - Use the GPU. To use a GPU, you must have
% Parallel Computing Toolbox(TM), and a
% CUDA-enabled NVIDIA GPU. If a suitable
% GPU is not available, an error message
% is issued.
%
% 'cpu' - Use the CPU.
%
% Default: 'auto'
%
% The following name-value pair arguments control the writing of image
% files. These arguments apply only when processing images in a datastore.
%
% 'MiniBatchSize' A scalar to specify the size of the image batch
% used to perform inference. This option can be used
% to leverage batch inference to speed up processing,
% comes at a cost of extra memory used. A higher value
% of MiniBatchSize can result in out of memory errors,
% depending on the hardware capabilities.
%
% Default: 1
%
% 'WriteLocation' A scalar string or character vector to specify a
% folder location to which extracted image files are
% written. The specified folder must have
% write permissions. If the folder already exists,
% the next available number will be added as a suffix
% to the folder name.
%
% Default: fullfile(pwd, 'SegmentObjectResults'), where
% pwd is the current working directory.
%
% 'NamePrefix' A scalar string or character vector to specify the
% prefix applied to output image file names. For
% input 2-D image inputs, the result MAT files
% are named <prefix>_<imageName>.mat, where
% imageName is the name of the input image
% without its extension.
%
% Default: 'segmentObj'
%
% 'Verbose' Set true to display progress information.
%
% Default: true
%
arguments
obj
im {validateImageInput}
options.Threshold (1,1){mustBeNumeric, mustBePositive, mustBeLessThanOrEqual(options.Threshold, 1), mustBeReal} = 0.5
options.SelectStrongest (1,1) logical = true
options.ExecutionEnvironment {mustBeMember(options.ExecutionEnvironment,{'gpu','cpu','auto'})} = 'auto'
options.Acceleration {mustBeMember(options.Acceleration,{'mex','none','auto'})} = 'auto'
options.WriteLocation {mustBeTextScalar} = fullfile(pwd,'SegmentObjectResults')
options.MiniBatchSize (1,1) {mustBeNumeric, mustBePositive, mustBeReal, mustBeInteger} = 1
options.NamePrefix {mustBeTextScalar} = "segmentObj"
options.Verbose (1,1) {validateLogicalFlag} = true
end
% Send the data to device or to host based on ExecutionEnvironment
% option
if(isequal(options.ExecutionEnvironment, 'auto'))
if(canUseGPU)
options.ExecutionEnvironment = 'gpu';
else
options.ExecutionEnvironment = 'cpu';
end
end
% If writeLocation is set with a non-ds input, throw a warning
if(~matlab.io.datastore.internal.shim.isDatastore(im) &&...
~strcmp(options.WriteLocation, fullfile(pwd,'SegmentObjectResults')))
warning(message('vision:solov2:WriteLocNotSupported'));
end
autoResize = true;
castToGpuArray = ~isgpuarray(im);
% Check if the input image is a single image or a batch
if(matlab.io.datastore.internal.shim.isDatastore(im))
nargoutchk(0,1);
[varargout{1:nargout}] = ...
segmentObjectsInDatastore(obj, im,...
autoResize,...
options.MiniBatchSize,...
options,...
castToGpuArray);
elseif(ndims(im)<=3)
% Process Single image
nargoutchk(0,4);
miniBatchSize=1;
[varargout{1:nargout}] =...
segmentObjectsInImgStack(obj, im,...
autoResize,...
miniBatchSize,...
options,...
castToGpuArray);
elseif(ndims(im)==4)
nargoutchk(0,4);
[varargout{1:nargout}] = ...
segmentObjectsInImgStack(obj, im,...
autoResize,...
options.MiniBatchSize,...
options,...
castToGpuArray);
else
% Code flow shouldn't reach here (ensured by validation code).
assert(false, 'Invalid image input.');
end
end
end
methods(Access=private)
function [masks, labels, scores, bboxes] = segmentObjectsInImgStack(obj, im, autoResize, miniBatchSize, options, castToGpuArray)
% This function dispatches batches for batch processing of
% image Stacks.
stackSize = size(im,4);
masks = {};
labels = {};
scores = {};
bboxes = {};
% Process images from the imageStack, a minibatch at a time
for startIdx = 1 : miniBatchSize : stackSize
endIdx = min(startIdx+miniBatchSize-1, stackSize);
imBatch = im(:,:,:,startIdx:endIdx);
[masksCell, labelCell, scoreCell, boxCell] = ...
segmentObjectsInBatch(obj, imBatch,...
autoResize, options, castToGpuArray);
masks = vertcat(masks, masksCell); %#ok<AGROW>
labels = vertcat(labels, labelCell); %#ok<AGROW>
scores = vertcat(scores, scoreCell); %#ok<AGROW>
bboxes = vertcat(bboxes, boxCell); %#ok<AGROW>
end
% For a stack size = 1 (single image) output raw matrices
% instead of cell arrays.
if(isscalar(masks))
masks = masks{1};
% labels = labels{1};
scores = scores{1};
bboxes = bboxes{1};
end
end
function outds = segmentObjectsInDatastore(obj, imds, autoResize, miniBatchSize, options, castToGpuArray)
imdsCopy = copy(imds);
imdsCopy.reset();
% Get a new write location
fileLocation = vision.internal.GetUniqueFolderName(options.WriteLocation);
if(~exist(fileLocation, 'dir'))
success = mkdir(fileLocation);
if(~success)
throwAsCaller(MException('vision:solov2:folderCreationFailed',...
vision.getMessage('vision:solov2:folderCreationFailed')));
end
end
% Handle verbose display
printer = vision.internal.MessagePrinter.configure(options.Verbose);
printer.linebreak();
iPrintHeader(printer);
msg = iPrintInitProgress(printer,'', 1);
imIdx = 0;
outFileList = [];
% Process images from the datastore
while (hasdata(imdsCopy))
imBatch = [];
fileNames = []; % Needed to build output names for result .matfiles
% Build a minibatch worth of data
for i = 1:miniBatchSize
if(~hasdata(imdsCopy))
break;
end
imIdx = imIdx + 1;
[img, imgInfo] = read(imdsCopy); %#ok<AGROW>
% Handle combineDS - use first cell, as the image is
% expected to be the first output.
if(iscell(imgInfo))
imgInfo = imgInfo{1};
end
%If the datastore doesn't expose filename, use the
% read index instead
if (isfield(imgInfo, 'Filename'))
[~,fileNames{i}] = fileparts(imgInfo.Filename); %#ok<AGROW>
else
fileNames{i} = num2str(imIdx); %#ok<AGROW>
end
if(iscell(img))
imBatch{i} = img{1}; % image should be the first output
else
imBatch{i} = img;
end
end
[masksCellSeg, labelCellSeg, scoreCellSeg, bboxCellSeg] = ...
segmentObjectsInBatch(obj, imBatch, autoResize, options, castToGpuArray);
if(iscell(masksCellSeg))
masksCell = masksCellSeg;
labelCell = labelCellSeg;
scoreCell = scoreCellSeg;
bboxCell = bboxCellSeg;
else
masksCell{1} = masksCellSeg;
labelCell{1} = labelCellSeg;
scoreCell{1} = scoreCellSeg;
bboxCell{1} = bboxCellSeg;
end
% Write results to the disk
for idx = 1:numel(masksCell)
matfilename = string(options.NamePrefix)+"_"+string(fileNames{idx})+".mat";
masks = masksCell{idx};
boxScore = scoreCell{idx};
boxLabel = labelCell{idx};
boxes = bboxCell{idx};
currFileName = fullfile(fileLocation, matfilename);
save(currFileName,...
"masks","boxScore","boxLabel","boxes");
outFileList = [outFileList; currFileName];
end
% Print number of processed images
msg = iPrintProgress(printer, msg, imIdx+numel(masksCell)-1);
end
outds = fileDatastore(outFileList, 'FileExtensions', '.mat',...
'ReadFcn', @(x)iSegmentObjectsReader(x));
printer.linebreak(2);
end
function [masks, labels, scores, bboxes] = segmentObjectsInBatch(obj, im, autoResize, options, castToGpuArray)
if(iscell(im))
batchSize = numel(im);
im = cat(4, im{:});
else
batchSize = size(im,4);
end
% Convert to gpuArray based on executionEnvironment.
if castToGpuArray
if (strcmp(options.ExecutionEnvironment,'auto') && canUseGPU) || strcmp(options.ExecutionEnvironment,'gpu')
im = gpuArray(im);
end
end
% Preprocess input
[im, info] = yolov8.preprocessInput(im, obj.InputSize(1:2),...
obj.NormalizationStatistics.Mean, obj.NormalizationStatistics.StandardDeviation,...
autoResize);
im = dlarray(im, 'SSCB');
% Predict on the yolov8 segmentation network
fout = cell(size(obj.Network.OutputNames'));
[fout{:}] = predict(obj.Network, im, "Acceleration", options.Acceleration);
% Reshape predictions
[detectionPriors, detectionDimension, maskPriors] = iReshapePredictions(fout);
% Compute box and class priors
[boxPriors, clsPriors] = iGetBoundingBoxesAndClasses(detectionPriors, detectionDimension);
classes = obj.ClassNames;
numClasses = size(classes,1);
shape = size(im,1:2);
% Obtain boxes, scores and labels
if batchSize>1
[bboxes, scores, labels, masks] = yolov8.extractBatchDetections(fout{7,1}, boxPriors, clsPriors, maskPriors, classes, options.Threshold, batchSize, shape, info, castToGpuArray);
else
[bboxesNorm, scores, labelIds, fullDets] = yolov8.extractDetections(boxPriors, clsPriors, maskPriors, numClasses, options.Threshold);
masks = yolov8.extractMasks(fout{7,1}, fullDets(:,7:end), bboxesNorm, shape, info.OriginalSize);
bboxesScaled = iScaleBoxes(shape, bboxesNorm, info.OriginalSize);
bboxes = x1y1x2y2ToXYWH(bboxesScaled);
% Convert classId to classNames.
% Create categories of labels such that the order of the classes is retained.
labels = categorical(classes,cellstr(classes));
labels = labels(labelIds);
if castToGpuArray
scores = gather(scores);
bboxes = gather(bboxes);
labels = gather(labels);
end
end
end
end
%----------------------------------------------------------------------
methods
function this = set.NormalizationStatistics(this,statsStruct)
iValidateNormalizationStats(statsStruct,this.InputSize(3))
this.NormalizationStatisticsInternal = struct("Mean",gather(reshape(statsStruct.Mean,[1 this.InputSize(3)])),...
"StandardDeviation",gather(reshape(statsStruct.StandardDeviation,[1 this.InputSize(3)])));
statsStructForInputNorm = statsStruct;
if ~all(isfield(statsStructForInputNorm, {'Mean','Std','Max','Min'}))
statsStructForInputNorm.Mean = reshape(statsStructForInputNorm.Mean,[1 1 this.InputSize(3)]);
statsStructForInputNorm.Std = reshape(statsStructForInputNorm.StandardDeviation,[1 1 this.InputSize(3)]);
statsStructForInputNorm.Min = [];
statsStructForInputNorm.Max = [];
end
this = setInputNormalization(this,statsStructForInputNorm);
end
function statsStruct = get.NormalizationStatistics(this)
statsStruct = this.NormalizationStatisticsInternal;
end
end
methods(Static, Hidden)
function [data, info] = preprocessInput(data, targetSize, ~, ~, ~)
% Preprocess input data for inference
if istable(data)
data = table2cell(data);
end
info.OriginalSize = size(data);
% Handle grayscale inputs
if(size(data,3)==1)
data = repmat(data,[1 1 3 1]);
end
Ibgr = flip(data,3);
% Resize
preprocesedImage = helper.preprocess(Ibgr,targetSize);
data = flip(preprocesedImage,3);
end
function [bboxes, scores, labels, masks] = extractBatchDetections(fout, boxPriors, clsPriors, maskPriors, classes, confThresh, batchSize, shape, info, castToGpuArray)
numClasses = size(classes,1);
bboxes = cell(batchSize, 1);
scores = cell(batchSize, 1);
labels = cell(batchSize, 1);
masks = cell(batchSize, 1);
for ii = 1:batchSize
[bboxesNorm, scores{ii}, labelIds, fullDets] = yolov8.extractDetections(boxPriors(:,:,ii), clsPriors(:,:,ii), maskPriors(:,:,ii), numClasses, confThresh);
masks{ii} = yolov8.extractMasks(fout(:,:,:,ii), fullDets(:,7:end), bboxesNorm, shape, info.OriginalSize);
bboxesScaled = iScaleBoxes(shape, bboxesNorm, info.OriginalSize);
bboxes{ii} = x1y1x2y2ToXYWH(bboxesScaled);
% Convert classId to classNames.
% Create categories of labels such that the order of the classes is retained.
labelsMap = categorical(classes,cellstr(classes));
labels{ii} = labelsMap(labelIds);
if castToGpuArray
scores{ii} = gather(scores{ii});
bboxes{ii} = gather(bboxes{ii});
labels{ii} = gather(labels{ii});
end
end
end
function [bboxes, scores, labelIds, fullDets] = extractDetections(boxPriors, clsPriors, maskPriors, numClasses, confThresh)
infOut = cat(2, boxPriors, clsPriors);
pred = cat(2, infOut, maskPriors);
maskIndex = 4 + numClasses;
tmpVal = pred(:, 5:maskIndex);
tmpMaxVal = max(tmpVal,[],2);
boxCandidates = tmpMaxVal > confThresh;
pred(:,1:4,:) = computeBoxes(pred(:,1:4));
predFull = extractdata(pred(boxCandidates, :));
box = predFull(:, 1:4);
cls = predFull(:, 5:5 + numClasses-1);
mask = predFull(:, 5 + numClasses:end);
[clsConf,ind] = max(cls,[],2);
fullDets = cat (2, box, clsConf, ind, mask);
fullDets = fullDets(clsConf > confThresh,:);
bboxesTmp = fullDets(:,1:4);
scoresTmp = fullDets(:, 5);
iou_thres = 0.8; % IoU threshold for NMS
% Apply NMS
[bboxes, scores, labelIds, idx] = selectStrongestBboxMulticlass(bboxesTmp, scoresTmp, ind, ...
'RatioType', 'Min', 'OverlapThreshold', iou_thres);
fullDets = fullDets(idx,:);
end
function [mask,downsampled_bboxes] = extractMasks(proto, masks_in, bboxes, shape, origShape)
[mh, mw, c] = size(proto);
[ih, iw] = deal(shape(1),shape(2));
proto = extractdata(proto);
protPermute = permute(proto,[3,2,1]);
protoVal = reshape(protPermute,c,[]);
maskTmp = masks_in*protoVal;
% Match Python code
maskTmpTrans = permute(maskTmp,[2,1]);
masks = reshape(maskTmpTrans,mw,mh,[]);
masks = permute(masks,[2,1,3]);
% Vectorized bbox calculations
scale = [mw./iw, mh./ih, mw./iw, mh./ih];
downsampled_bboxes = bboxes .* scale;
masks = iCropMasks(masks, downsampled_bboxes);
% Resize masks efficiently
mask = false([origShape(1:2), size(masks, 3)]); % Preallocate as logical
for i = 1:size(masks, 3)
mask(:,:,i) = imresize(masks(:,:,i), [origShape(1), origShape(2)], 'bilinear') > 0;
end
end
end
end
%--------------------------------------------------------------------------
function resultMasks = iCropMasks(masks, boxes)
[rows, cols, numBoxes] = size(masks);
[r, c] = ndgrid(1:rows, 1:cols);
resultMasks = zeros(size(masks), 'like', masks); % Use same data type as input
% Vectorized box coordinates
boxes = boxes + 1; % Add 1 to all coordinates at once
for i = 1:numBoxes
logicalMask = (r >= boxes(i,2)) & (r < boxes(i,4)) & ...
(c >= boxes(i,1)) & (c < boxes(i,3));
resultMasks(:,:,i) = masks(:,:,i) .* logicalMask;
end
end
%--------------------------------------------------------------------------
function boxCentres = computeBoxes(boxCandidates)
dw = boxCandidates(:,3,:)./2;
dh = boxCandidates(:,4,:)./2;
% Initialize y with the same size as x
boxCentres = zeros(size(boxCandidates));
% Calculate top left x and y
boxCentres(:, 1, :) = boxCandidates(:, 1, :) - dw;
boxCentres(:, 2, :) = boxCandidates(:, 2, :) - dh;
% Calculate bottom right x and y
boxCentres(:, 3, :) = boxCandidates(:, 1, :) + dw;
boxCentres(:, 4, :) = boxCandidates(:, 2, :) + dh;
end
%--------------------------------------------------------------------------
function [detectionPriors, detectionDimension, maskPriors] = iReshapePredictions(fout)
% First three outputs correspond to mask priors
Z1Conv = fout{1,1};
batchSize = size(Z1Conv,4);
Z1Convmc = permute(Z1Conv,[2,1,3,4]);
Z1mc = reshape(Z1Convmc,[],32,batchSize);
Z2Conv = fout{2,1};
Z2Convmc = permute(Z2Conv,[2,1,3,4]);
Z2mc = reshape(Z2Convmc,[],32,batchSize);
Z3Conv = fout{3,1};
Z3Convmc = permute(Z3Conv,[2,1,3,4]);
Z3mc = reshape(Z3Convmc,[],32,batchSize);
maskPriors = cat(1, Z1mc, Z2mc, Z3mc);
% last 3 priors correspond to detection priors
Z1x = fout{4,1};
Z1ViewxCat = permute(Z1x,[2,1,3,4]);
detectionDimension{1,1} = size(Z1ViewxCat);
Z1xCat = reshape(Z1ViewxCat,[],144,batchSize);
Z2x = fout{5,1};
Z2ViewxCat = permute(Z2x,[2,1,3,4]);
detectionDimension{1,2} = size(Z2ViewxCat);
Z2xCat = reshape(Z2ViewxCat,[],144,batchSize);
Z3x = fout{6,1};
Z3ViewxCat = permute(Z3x,[2,1,3,4]);
detectionDimension{1,3} = size(Z3ViewxCat);
Z3xCat = reshape(Z3ViewxCat,[],144,batchSize);
detectionPriors = cat(1,Z1xCat,Z2xCat,Z3xCat);
end
%--------------------------------------------------------------------------
function [boxPriors, clsPriors] = iGetBoundingBoxesAndClasses(detectionPriors,detectionDimension)
stride = [8, 16, 32];
anchorMap{1,1} = zeros(detectionDimension{1,1});
anchorMap{2,1} = zeros(detectionDimension{1,2});
anchorMap{3,1} = zeros(detectionDimension{1,3});
anchorGrid = computeSegmentationAnchors(anchorMap, stride);
box = detectionPriors(:,1:64,:);
cls = detectionPriors(:,65:end,:);
boxPriors = zeros(size(detectionPriors,1),4,size(detectionPriors,3));
for i = 1:size(detectionPriors,3)
% Decode boxes
boxTmp = box(:,:,i);
bboxData = reshape(boxTmp,[],16,4);
% Apply softmax operation
X = bboxData;
X = X - max(X,[],2);
X = exp(X);
softmaxOut = X./sum(X,2);
softmaxOut = permute(softmaxOut,[3,1,2]);
softmaxOut = dlarray(single(softmaxOut),'SSCB');
% Compute Distribution Focal Loss (DFL)
weights = dlarray(single(reshape(0:15, [1, 1, 16])));
bias = dlarray(single(0));
convOut = dlconv(softmaxOut, weights, bias);
convOut = extractdata(convOut);
convOut = permute(convOut,[2,1]);
% Transform distance (ltrb) to box (xywh)
lt = convOut(:,1:2);
rb = convOut(:,3:4);
x1y1 = anchorGrid - lt;
x2y2 = anchorGrid + rb;
% Compute centre
cxy = (x1y1 + x2y2)./2;
% Compute width and height values
wh = x2y2 - x1y1;
% bbox values
boxOut = cat(2,cxy,wh);
% dbox values
largestFeatureMapSize = detectionDimension{1,1}(1,1).*detectionDimension{1,1}(1,2);
mulConst = [8.*ones(largestFeatureMapSize,1);16.*ones(largestFeatureMapSize./4,1);32.*ones(largestFeatureMapSize./16,1)];
boxPriors(:,:,i) = boxOut.* mulConst;
end
clsPriors = sigmoid(dlarray(cls));
end
%--------------------------------------------------------------------------
function isOneOrMoreType(detectorInp)
if ~isempty(detectorInp)
detectorInp = convertCharsToStrings(detectorInp);
if isstring(detectorInp)
tf = ismember(detectorInp, {'yolov8n', 'yolov8s', 'yolov8m', 'yolov8l', 'yolov8x', 'uninitialized'});
else
tf = isequal(class(detectorInp),'dlnetwork');
end
assert(tf,'Input must be either a supported YOLOv8 detector name or a trained YOLOv8 network');
end
end
%--------------------------------------------------------------------------
function detectorName = iGetSmallNetworkDetectorName()
detectorName = "yolov8s";
end
%--------------------------------------------------------------------------
function network = iDownloadAndUpdatePretrainedModels(modelName, params)
data = downloadPretrainedYOLOv8 (modelName);
network = data.net;
if params.UpdateInputLayer
network = iUpdateFirstConvChannelsAndInputLayer(network,params.InputSize);
end
end
%--------------------------------------------------------------------------
function model = downloadPretrainedYOLOv8(modelName)
% The downloadPretrainedYOLOv8 function downloads a YOLO v8 network
% pretrained on COCO dataset.
supportedNetworks = ["yolov8n", "yolov8s", "yolov8m", "yolov8l", "yolov8x"];
validatestring(modelName, supportedNetworks);
modelName = convertContainedStringsToChars(modelName);
netMatFileFullPath = fullfile(pwd, [modelName, 'Seg.mat']);
if ~exist(netMatFileFullPath,'file')
fprintf(['Downloading pretrained ', modelName ,' network.\n']);
fprintf('This can take several minutes to download...\n');
url = ['https://github.com/matlab-deep-learning/Pretrained-YOLOv8-Network-For-Object-Detection/releases/download/v1.0.0/', [modelName,'Seg'], '.mat'];
websave(netMatFileFullPath, url);
fprintf('Done.\n\n');
else
fprintf(['Pretrained ', modelName, ' network already exists.\n\n']);
end
model = load(netMatFileFullPath);
end
%--------------------------------------------------------------------------
function validateImageInput(in)
im = [];
if(isnumeric(in))
im = in;
elseif(matlab.io.datastore.internal.shim.isDatastore(in))
out = preview(in);
if(iscell(out))
if(isempty(out))
im = [];
else
im = out{1};
end
else
im = out;
end
end
if(~validateImage(im)||isempty(im))
throwAsCaller(MException('vision:solov2:invalidImageInput',...
vision.getMessage('vision:solov2:invalidImageInput')));
end
end
%--------------------------------------------------------------------------
function tf = validateImage(in)
tf = isnumeric(in)&&...
ndims(in)<=4 && ... && numdims should be less than 3
(size(in,3)==3||size(in,3)==1); % gray scale or RGB image
end
%--------------------------------------------------------------------------
function validateLogicalFlag(in)
validateattributes(in,{'logical'}, {'scalar','finite', 'real'});
end
%--------------------------------------------------------------------------
function mustBeRGBSize(input)