-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathts-state-space-model.cl
executable file
·603 lines (558 loc) · 25.8 KB
/
ts-state-space-model.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
;; classes and methods for state-space-model
;; reference: "ŽžŒn—ñ‰ðÍ“ü–å ’˜:–k쌹Žl˜Y Šâ”g‘“X" 9 ͈È~
(defpackage :ts-state-space
(:use :cl :read-data :util :vector :matrix
:statistics :ts-util :ts-stat :ts-read-data
:handling-missing-value)
(:nicknames :ts-stsp)
(:export
#:trend #:trend-prediction
#:seasonal #:seasonal-adj))
(in-package :ts-stsp)
(defclass state-space-model (timeseries-model)
((F-matrices :initarg :F-matrices
:initform (error "Must specify the F matrices"))
(G-matrices :initarg :G-matrices
:initform (error "Must specify the G matrices"))
(H-matrices :initarg :H-matrices
:initform (error "Must specify the H matrices"))
(Q-matrices :initarg :Q-matrices :initform nil)
(R-matrices :initarg :R-matrices :initform nil)
))
(defmethod F ((stsp state-space-model) n)
(let ((val (slot-value stsp 'F-matrices)))
(cond ((functionp val) (funcall val n))
((arrayp val) val)
((listp val) (nth n val))
(t (error "illegal F-matrices | ~A" val)))))
(defmethod G ((stsp state-space-model) n)
(let ((val (slot-value stsp 'G-matrices)))
(cond ((functionp val) (funcall val n))
((arrayp val) val)
((listp val) (nth n val))
(t (error "illegal G-matrices | ~A" val)))))
(defmethod H ((stsp state-space-model) n)
(let ((val (slot-value stsp 'H-matrices)))
(cond ((functionp val) (funcall val n))
((arrayp val) val)
((listp val) (nth n val))
(t (error "illegal H-matrices | ~A" val)))))
(defmethod Q ((stsp state-space-model) n)
(let ((val (slot-value stsp 'Q-matrices)))
(cond ((functionp val) (funcall val n))
((arrayp val) val)
((listp val) (nth n val))
(t (error "illegal Q-matrices | ~A" val)))))
(defmethod R ((stsp state-space-model) n)
(let ((val (slot-value stsp 'R-matrices)))
(cond ((functionp val) (funcall val n))
((arrayp val) val)
((listp val) (nth n val))
(t (error "illegal R-matrices | ~A" val)))))
(defclass gaussian-stsp-model (state-space-model)
((x-nn :initarg :x-nn :accessor x-nn :initform nil :type list)
(x-nn-1 :initarg :x-nn-1 :accessor x-nn-1 :initform nil :type list)
(v-nn :initarg :v-nn :accessor v-nn :initform nil :type list)
(v-nn-1 :initarg :v-nn-1 :accessor v-nn-1 :initform nil :type list)))
(defgeneric x-00 (gaussian-stsp-model)
(:documentation "Initial value of State x with gaussian-stsp-model"))
(defgeneric v-00 (gaussian-stsp-model)
(:documentation "Initial value of covariance v with gaussian-stsp-model"))
(defgeneric aic (gaussian-stsp-model)
(:documentation "Akaike Information Criterion for gaussian-stsp-model"))
(defmethod kalman-filter ((stsp gaussian-stsp-model) &key x-00 v-00)
(let ((x-00 (if x-00 x-00 (x-00 stsp)))
(v-00 (if v-00 v-00 (v-00 stsp))))
(declare (type dvec x-00))
(declare (type dmat v-00))
(assert (and x-00 v-00 (observed-ts stsp)))
(with-accessors ((x x-nn)
(x-1 x-nn-1)
(v v-nn)
(v-1 v-nn-1)) stsp
(loop with len = (length (ts-points (observed-ts stsp)))
for n below len
initially (setf x-1 (make-list len)
x (make-list len)
v (make-list len)
v-1 (make-list len))
do (multiple-value-bind (%x-nn %v-nn %x-nn-1 %v-nn-1)
(one-step-kalman-filter stsp x-00 v-00
(ts-p-pos (aref (ts-points (observed-ts stsp)) n))
n)
(setf (nth n x-1) %x-nn-1
(nth n v-1) %v-nn-1
(nth n x) %x-nn
(nth n v) %v-nn
x-00 %x-nn
v-00 %v-nn))))))
(defmethod one-step-kalman-filter ((stsp gaussian-stsp-model) x v observed-pt n)
(multiple-value-bind (frcst-x frcst-v) (one-step-forecast stsp x v n)
(apply #'values `(,@(multiple-value-list (filtering stsp frcst-x frcst-v observed-pt n))
,frcst-x ,frcst-v))))
(defmethod one-step-forecast ((stsp gaussian-stsp-model) x v n)
(declare (type dvec x))
(declare (type dmat v))
(values
(m*v (F stsp n) x)
(mcm (m*m (m*m (F stsp n) v) (transpose (F stsp n)))
(m*m (m*m (G stsp n) (Q stsp n)) (transpose (G stsp n))))))
(defmethod filtering ((stsp gaussian-stsp-model) x v observed-pt n)
(declare (type dvec x))
(declare (type dmat v))
(let ((nanp (find-if #'nan-p observed-pt)))
(if nanp (values x v)
(let ((kalman-gain
(m*m (m*m v (transpose (H stsp n)))
(m^-1 (mcm (m*m (m*m (H stsp n) v) (transpose (H stsp n)))
(R stsp n))))))
(values
(vcv x (m*v kalman-gain (vcv observed-pt (m*v (H stsp n) x) :c #'-)) :c #'+)
(mcm v (m*m (m*m kalman-gain (H stsp n)) v) :c #'-))))))
(defmethod long-step-forecast ((stsp gaussian-stsp-model) x v n n-ahead)
(assert (>= n-ahead 1))
(loop for i from 1 to n-ahead
with x-nn = (make-list n-ahead)
with v-nn = (make-list n-ahead)
do (multiple-value-setq (x v)
(one-step-forecast stsp x v (+ n i)))
(setf (nth (1- i) x-nn) x
(nth (1- i) v-nn) v)
finally (return (values x-nn v-nn))))
(defmethod forecast ((stsp gaussian-stsp-model) n-ahead
&key (smoothing nil))
"Forecast observation value"
(assert (>= n-ahead 0))
(flet ((map-mat (mat fcn)
(loop for i below (array-dimension mat 0)
do (loop for j below (array-dimension mat 1)
do (setf (aref mat i j) (funcall fcn (aref mat i j)))))
mat)
(fore-y (index state)
(m*v (H stsp index) state))
(fore-d (index v)
(mcm (m*m (m*m (H stsp index) v)
(transpose (H stsp index)))
(R stsp index))))
(with-accessors ((x x-nn) (v v-nn)
(x-1 x-nn-1) (v-1 v-nn-1)) stsp
(multiple-value-bind (smthed-x smthed-v)
(if smoothing (smoothing stsp) (values x-1 v-1))
(let* ((len (length x))
(result-len (+ len n-ahead))
(ret-x (make-list result-len))
(ret-v (make-list result-len))
x-list v-list)
(when (> n-ahead 0)
(multiple-value-setq (x-list v-list)
(long-step-forecast
stsp (car (last x)) (car (last v)) (1- len) n-ahead)))
(loop for i below result-len
do (if (< i len)
(setf (nth i ret-x) (fore-y i (nth i smthed-x))
(nth i ret-v) (fore-d i (nth i smthed-v)))
(setf (nth i ret-x) (fore-y i (nth (- i len) x-list))
(nth i ret-v) (fore-d i (nth (- i len) v-list))))
finally
(return
(values ret-x (map 'list #'(lambda (mat)
(map-mat mat #'(lambda (v)
(dfloat (sqrt (/ v len))))))
ret-v)))))))))
(defmethod smoothing ((stsp gaussian-stsp-model))
"Do smoothing under the condition N which is a number of observed data"
(let ((N (length (ts-points (observed-ts stsp)))))
(unless (and (x-nn stsp) (v-nn stsp))
(kalman-filter stsp))
(with-accessors ((x x-nn)
(x-1 x-nn-1)
(v v-nn)
(v-1 v-nn-1)) stsp
(loop for i from (- N 2) downto 0
with smthed-x = `(,(nth (1- N) x))
with smthed-v = `(,(nth (1- N) v))
with An-list
as (%smthed-x %smthed-v An) =
(multiple-value-list (one-step-smoothing stsp (car smthed-x) (car smthed-v)
(nth (1+ i) x-1) (nth (1+ i) v-1)
(nth i x) (nth i v) i))
do (push %smthed-x smthed-x)
(push %smthed-v smthed-v)
(push An An-list)
finally (return (values smthed-x smthed-v An-list))))))
(defmethod one-step-smoothing ((stsp gaussian-stsp-model) smthed-x smthed-v pred-x pred-v x v n)
(let ((An (m*m (m*m v (transpose (F stsp (1+ n)))) (m^-1 pred-v))))
(values (vcv x (m*v An (vcv smthed-x pred-x :c #'-)))
(mcm v (m*m (m*m An (mcm smthed-v pred-v :c #'-)) (transpose An)))
An)))
(defmethod log-likelihood ((stsp gaussian-stsp-model)
&key (with-s^2 t) (smoothing nil))
(let ((org-r (if with-s^2 (kalman-filter stsp)
(prog1 (slot-value stsp 'R-matrices)
(setf (slot-value stsp 'R-matrices)
(diag (array-dimension (R stsp 0) 0) 1.0d0))
(kalman-filter stsp)))))
(with-accessors ((x x-nn-1) (v v-nn-1) (ts observed-ts)) stsp
(multiple-value-bind (x v)
(if smoothing (smoothing stsp) (values x v))
(let* ((n (length x))
(y-n (loop for i below n collect
(m*v (H stsp i) (nth i x))))
(d-n (loop for i below n collect
(mcm (m*m (m*m (H stsp i) (nth i v)) (transpose (H stsp i)))
(R stsp i)))))
(if with-s^2
(* -1/2
(+ (* (length (dataset-dimensions ts)) n
(log (* 2 (coerce pi 'double-float))))
(loop for d-i in d-n
as log-detd = (log (det d-i))
sum log-detd)
(loop for d-i in d-n
for y-i in y-n
for y across (map 'vector #'ts-p-pos (ts-points ts))
as dy = (vcv y y-i :c #'-)
sum (vdotv dy (m*v (m^-1 d-i) dy)))))
(progn
(assert (= 1 (length (dataset-dimensions ts))))
(let* ((d-n (loop for d in d-n
with cov = (aref (ts-covariance ts) 0 0)
collect (/ (aref d 0 0) cov)))
(s^2
(* (/ n)
(loop for i from 1 to n
for y across (map 'vector #'ts-p-pos (ts-points ts))
for y-i in y-n
for d in d-n
as dy = (aref (vcv y y-i :c #'-) 0)
sum (/ (expt dy 2) d)))))
(setf (slot-value stsp 'R-matrices) org-r)
(values
(* -1/2
(+ (* n (1+ (log (* 2 (coerce pi 'double-float) s^2))))
(loop for d in d-n sum (log d))))
s^2)))))))))
(defun make-ts-by-forecast (pos-list se-list org-ts
&key (n-ahead 0))
(let* ((start (ts-start org-ts))
(end (tf-incl (ts-end org-ts) n-ahead :freq (ts-freq org-ts)))
(time-labels (concatenate 'vector
(map 'vector #'ts-p-label (ts-points org-ts))
(make-array n-ahead :element-type 'string
:initial-element "predicted"))))
(values
(make-constant-time-series-data
'("forecast")
(map 'vector
#'(lambda (trend)
(make-array (length trend)
:initial-contents trend
:element-type 'double-float))
pos-list)
:time-label-name (time-label-name org-ts)
:time-labels time-labels
:start start :end end :freq (ts-freq org-ts))
(make-constant-time-series-data
'("standard error")
(map 'vector
#'(lambda (se) (matrix::mat2array se)) se-list)
:time-label-name (time-label-name org-ts)
:time-labels time-labels
:start start :end end :freq (ts-freq org-ts))
)))
(defmethod predict ((model gaussian-stsp-model) &key (n-ahead 0))
(kalman-filter model)
(multiple-value-bind (pos-list se-list)
(forecast model n-ahead :smoothing t)
(with-accessors ((ts observed-ts)) model
(make-ts-by-forecast pos-list se-list ts :n-ahead n-ahead))))
#||
(progn
(setq x
(make-instance 'gaussian-stsp-model
:F-matrices (make-array '(9 9)
:initial-contents
`((0.17438913366790465 -0.20966263354643136 0.459202505071864 1.0144694385486095 0.2871426375860843 -0.09273505423571009 -0.13087574744684466 -0.34467398543738703 -0.1765456124104221)
,@(loop for i below (1- 9)
collect (let ((list (make-list 9 :initial-element 0d0)))
(setf (nth i list) 1d0) list)))
:element-type 'double-float)
:G-matrices (make-array '(9 1)
:initial-contents
(loop for i below 9
collect (if (= i 0) '(1.0d0) '(0.0d0)))
:element-type 'double-float)
:H-matrices (make-array '(1 9)
:initial-contents
`(,(loop for i below 9
collect (if (= i 0) 1.0d0 0.0d0)))
:element-type 'double-float)
:Q-matrices (ts-covariance ukgas)
:R-matrices (diag 1 0.0d0)
:observed-ts (ts-demean ukgas)
))
(kalman-filter x :x-00 (make-array 9 :initial-element 0.0d0
:element-type 'double-float)
:v-00 (diag 9 1.0d0)))
||#
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; trend model (1-dimensional) ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defclass trend-model (gaussian-stsp-model)
((diff-k :initarg :diff-k :initform nil :type integer :accessor diff-k)
(tau^2 :initarg :tau^2 :initform nil :type number :accessor tau^2)
(aic :initarg :aic :initform *nan* :type number)))
(defmethod print-object ((model trend-model) stream)
(with-accessors ((k diff-k) (t^2 tau^2) (ts observed-ts)) model
(print-unreadable-object (model stream :type t :identity nil))
(format stream "~&K: ~D~%" k)
(format stream "~&T^2: ~F~%" t^2)
(format stream "~&AIC: ~F~%" (slot-value model 'aic))))
(defmethod aic ((model trend-model))
(+ (* -2 (log-likelihood model :smoothing t))
(* 2 (+ (diff-k model) 2))))
(defun c_i (k i)
(declare (type fixnum k i))
(labels ((fact (i) (if (<= i 0) 1 (* i (fact (1- i))))))
(* (expt (- 1) (1+ i))
(/ (fact k) (* (fact (- k i)) (fact i))))))
(defun make-trend-F (diff-k)
(declare (type fixnum diff-k))
(make-array
`(,diff-k ,diff-k)
:initial-contents
`(,(loop for i from 1 to diff-k
collect (coerce (c_i diff-k i) 'double-float))
,@(loop for i below (1- diff-k)
collect
(let ((list (make-list diff-k :initial-element 0d0)))
(setf (nth i list) 1d0) list)))
:element-type 'double-float))
(defun make-trend-G (size)
(declare (type fixnum size))
(make-array `(,size 1)
:initial-contents
(loop for i below size
collect `(,(if (= i 0) 1.0d0 0.0d0)))
:element-type 'double-float))
(defun make-trend-H (size)
(declare (type fixnum size))
(make-array `(1 ,size)
:initial-contents
`(,(loop for i below size
collect (if (= i 0) 1.0d0 0.0d0)))
:element-type 'double-float))
(defun make-trend-Q (t^2)
(make-array '(1 1) :initial-element (coerce t^2 'double-float)
:element-type 'double-float))
(defun make-trend-R (v)
(make-array '(1 1) :initial-element (coerce v 'double-float)
:element-type 'double-float))
(defmethod trend ((d time-series-dataset)
&key (k 1) (t^2 0d0) (opt-t^2 nil) (s^2 1d0)
(delta 0.1d0) (search-width 10))
(assert (numberp t^2))
(when (< 1 (length (dataset-dimensions d))) (error "Trend model is for one-dimensional dataset."))
(if opt-t^2
(loop for i from (- search-width) to search-width
as t^2-i = (let ((tt (+ t^2 (* delta i)))) (if (>= tt 0d0) tt 0d0))
as m = (trend d :k k :t^2 t^2-i :opt-t^2 nil)
as aic = (slot-value m 'aic)
with min-aic = most-positive-double-float
with model
when (> min-aic aic)
do (setq model m
min-aic aic)
finally (return model))
(let ((model
(make-instance 'trend-model
:diff-k k :tau^2 t^2 :observed-ts d
:Q-matrices (make-trend-Q t^2)
:R-matrices (make-trend-R s^2) ;; (ts-covariance d)
:F-matrices (make-trend-F k)
:G-matrices (make-trend-G k)
:H-matrices (make-trend-H k))))
(setf (slot-value model 'aic) (aic model))
model)))
(defmethod x-00 ((model trend-model))
(let* ((seq-without-nan (remove-if #'nan-p (map 'dvec (lambda (pt) (aref (ts-p-pos pt) 0))
(ts-points (observed-ts model)))))
(mean (mean seq-without-nan))
;; (aref (ts-p-pos (aref (ts-points (observed-ts model)) 0)) 0)
)
(when (>= 2 (length seq-without-nan)) (error "Too many missing-values"))
(make-dvec (diff-k model) mean)))
(defmethod v-00 ((model trend-model))
(let* ((seq-without-nan (remove-if #'nan-p (map 'dvec (lambda (pt) (aref (ts-p-pos pt) 0))
(ts-points (observed-ts model)))))
(1st-mom 0d0)
(2nd-mom 0d0)
(n (length seq-without-nan)))
(declare (type double-float 1st-mom 2nd-mom) (type fixnum n))
(when (>= 2 n) (error "Too many missing-values"))
(do-vec (val seq-without-nan :type double-float)
(incf 1st-mom val)
(incf 2nd-mom (d-expt val 2d0)))
(diag (diff-k model) (- (/ 2nd-mom n) (d-expt (/ 1st-mom n) 2d0)))))
(defmethod trend-prediction ((d time-series-dataset)
&key (k 1) (t^2 0.1) (n-ahead 0)
(delta 0.1d0) (search-width 10))
(predict (trend d :k k :t^2 t^2 :delta delta :search-width search-width)
:n-ahead n-ahead))
;;;;;;;;;;;;;;;;;;
; seasonal model ;
;;;;;;;;;;;;;;;;;;
(defclass seasonal-model (gaussian-stsp-model)
((s-deg :initarg :s-deg :initform nil :type fixnum :accessor s-deg)
(s-freq :initarg :s-freq :initform nil :type fixnum :accessor s-freq)
(tau^2 :initarg :tau^2 :initform nil :type number :accessor tau^2)))
(defun d_i (i deg freq)
(declare (type fixnum i deg freq))
(flet ((poly-multiplication (coef-ar1 coef-ar2)
(declare (type (simple-array fixnum (*)) coef-ar1 coef-ar2))
(make-array
(* (length coef-ar1) (length coef-ar2))
:element-type 'fixnum
:initial-contents
(loop for coef1 of-type fixnum across coef-ar1
append (loop for coef2 of-type fixnum across coef-ar2
collect (the fixnum (+ coef1 coef2)))))))
(let ((ar1 (make-array freq :element-type 'fixnum
:initial-contents
(loop for i of-type fixnum below freq collect i))))
(if (eql deg 1) -1
(loop with ar = ar1
repeat (1- deg)
do (setq ar (poly-multiplication ar ar1))
finally (return (- (count i ar :test #'eql))))))))
(defun seasonal-mat-size (s-deg s-freq)
(declare (type fixnum s-deg s-freq))
(* s-deg (1- s-freq)))
(defun make-seasonal-F (s-deg s-freq)
(declare (type fixnum s-deg s-freq))
(let ((size (seasonal-mat-size s-deg s-freq)))
(declare (type fixnum size))
(make-array
`(,size ,size)
:initial-contents
`(,(loop for i from 1 to size
collect (dfloat (d_i i s-deg s-freq)))
,@(loop for i below (1- size)
collect
(let ((list (make-list size :initial-element 0d0)))
(setf (nth i list) 1d0) list)))
:element-type 'double-float)))
(defun make-seasonal-G (s-deg s-freq)
(declare (type fixnum s-deg s-freq))
(let ((size (seasonal-mat-size s-deg s-freq)))
(declare (type fixnum size))
(make-trend-G size)))
(defun make-seasonal-H (s-deg s-freq)
(declare (type fixnum s-deg s-freq))
(let ((size (seasonal-mat-size s-deg s-freq)))
(declare (type fixnum size))
(make-trend-H size)))
(defun make-seasonal-Q (t^2)
(make-array `(1 1) :initial-element (coerce t^2 'double-float)
:element-type 'double-float))
(defun make-seasonal-R (v)
(make-array `(1 1) :initial-element (coerce v 'double-float)
:element-type 'double-float))
(defmethod seasonal ((d time-series-dataset)
&key (degree 1) freq (t^2 0d0) (s^2 1d0))
(unless freq (setq freq (ts-freq d)))
(assert (> freq 1))
(make-instance 'seasonal-model
:observed-ts d
:s-deg degree :s-freq freq :tau^2 t^2
:Q-matrices (make-seasonal-Q t^2)
:R-matrices (make-seasonal-R s^2) ; (aref (ts-covariance d) 0 0)
:F-matrices (make-seasonal-F degree freq)
:G-matrices (make-seasonal-G degree freq)
:H-matrices (make-seasonal-H degree freq)))
(defmethod x-00 ((model seasonal-model))
(make-dvec (seasonal-mat-size (s-deg model) (s-freq model))
(dfloat (aref (ts-mean (observed-ts model)) 0))))
(defmethod v-00 ((model seasonal-model))
(diag (seasonal-mat-size (s-deg model) (s-freq model))
(dfloat (aref (ts-covariance (observed-ts model)) 0 0))))
(defmethod predict ((model seasonal-model) &key (n-ahead 0))
(kalman-filter model)
(multiple-value-bind (pos-list se-list)
(forecast model n-ahead :smoothing t)
(with-accessors ((ts observed-ts)) model
(make-ts-by-forecast pos-list se-list ts :n-ahead n-ahead))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; seasonal-adjustment-model ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defclass seasonal-adjustment-model (gaussian-stsp-model)
((trend :initarg :trend :initform nil :type trend-model :accessor trend-model)
(seasonal :initarg :seasonal :initform nil :type seasonal-model :accessor seasonal-model)))
(defmethod seasonal-adj ((d time-series-dataset)
&key (tr-k 1) (tr-t^2 0d0)
(s-deg 1) s-freq (s-t^2 0d0)
(s^2 1d0))
(unless s-freq (setq s-freq (ts-freq d)))
(let ((trend (trend d :k tr-k :t^2 tr-t^2))
(seasonal (seasonal d :degree s-deg :freq s-freq :t^2 s-t^2)))
(make-instance 'seasonal-adjustment-model
:trend trend :seasonal seasonal :observed-ts d
:Q-matrices (append-mat (slot-value trend 'Q-matrices)
(slot-value seasonal 'Q-matrices))
:R-matrices (make-array '(1 1) :element-type 'double-float :initial-element s^2)
:F-matrices (append-mat (slot-value trend 'F-matrices)
(slot-value seasonal 'F-matrices))
:G-matrices (append-mat (slot-value trend 'G-matrices)
(slot-value seasonal 'G-matrices))
:H-matrices (append-mat (slot-value trend 'H-matrices)
(slot-value seasonal 'H-matrices)
:direction :horizontal))))
(defmethod x-00 ((model seasonal-adjustment-model))
(with-accessors ((tr trend-model)
(sea seasonal-model)) model
(concatenate 'dvec (x-00 tr) (x-00 sea))))
(defmethod v-00 ((model seasonal-adjustment-model))
(with-accessors ((tr trend-model)
(sea seasonal-model)) model
(append-mat (v-00 tr) (v-00 sea))))
;;; extra: trend double!
(defclass double-trend (gaussian-stsp-model)
((trend1 :initarg :trend1 :initform nil :accessor trend1-model)
(trend2 :initarg :trend2 :initform nil :accessor trend2-model)
(seasonal :initarg :seasonal :initform nil :type seasonal-model :accessor seasonal-model)))
(defmethod double-trend-adj ((d time-series-dataset)
&key (tr1-k 1) (tr1-t^2 0d0)
(tr2-k 1) (tr2-t^2 0d0)
(s-deg 1) s-freq (s-t^2 0d0)
(s^2 1d0))
(unless s-freq (setq s-freq (ts-freq d)))
(let ((trend1 (trend d :k tr1-k :t^2 tr1-t^2))
(trend2 (trend d :k tr2-k :t^2 tr2-t^2))
(seasonal (seasonal d :degree s-deg :freq s-freq :t^2 s-t^2)))
(make-instance 'double-trend
:trend1 trend1 :trend2 trend2 :seasonal seasonal :observed-ts d
:Q-matrices (append-mat (slot-value trend1 'Q-matrices)
(append-mat (slot-value trend2 'Q-matrices)
(slot-value seasonal 'Q-matrices)))
:R-matrices (make-array '(1 1) :element-type 'double-float :initial-element s^2)
:F-matrices (append-mat (slot-value trend1 'F-matrices)
(append-mat (slot-value trend2 'F-matrices)
(slot-value seasonal 'F-matrices)))
:G-matrices (append-mat (slot-value trend1 'G-matrices)
(append-mat (slot-value trend2 'G-matrices)
(slot-value seasonal 'G-matrices)))
:H-matrices (append-mat (slot-value trend1 'H-matrices)
(append-mat (slot-value trend2 'H-matrices)
(slot-value seasonal 'H-matrices)
:direction :horizontal)
:direction :horizontal))))
(defmethod x-00 ((model double-trend))
(with-accessors ((tr1 trend1-model)
(tr2 trend2-model)
(sea seasonal-model)) model
(concatenate 'dvec (x-00 tr1) (x-00 tr2) (x-00 sea))))
(defmethod v-00 ((model double-trend))
(with-accessors ((tr1 trend1-model)
(tr2 trend2-model)
(sea seasonal-model)) model
(append-mat (v-00 tr1) (append-mat (v-00 tr2) (v-00 sea)))))