-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathchangefinder.cl
194 lines (185 loc) · 9.56 KB
/
changefinder.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
;; ref. 山西健司 "データマイニングによる異常検知"
(defpackage :changefinder
(:use :cl :read-data :util :vector :matrix
:statistics :ts-util :ts-stat :ts-read-data
:handling-missing-value)
(:export :init-changefinder
:update-changefinder))
(in-package :changefinder)
(defclass changefinder ()
((n-dim :initarg :n-dim :initform nil :accessor n-dim)
(ts-model :initarg :ts-model :initform nil :accessor ts-model)
(last-pt-stats :initarg :last-pt-stats :initform nil :accessor last-pt-stats)
(pre-score-list :initarg :pre-score-list :initform nil :accessor pre-score-list)
(score-model :initarg :score-model :initform nil :accessor score-model)
(score-type :initarg :score-type :initform :log :accessor score-type) ;; :log | :hellinger
(score-list :initarg :score-list :initform nil :accessor score-list)
(last-qt-stats :initarg :last-qt-stats :initform nil :accessor last-qt-stats)
(ts-wsize :initarg :ts-wsize :initform nil :accessor ts-wsize)
(score-wsize :initarg :score-wsize :initform nil :accessor score-wsize)
(discount :initarg :discount :initform nil :accessor discount)))
(defmethod init-changefinder ((ts time-series-dataset)
&key (score-type :log) ;; :log | :hellinger
(ts-wsize 5)
(score-wsize 5)
(sdar-k 4)
(discount 0.005d0))
(assert (>= (length (ts-points ts)) (+ ts-wsize score-wsize (* 2 sdar-k)))
(ts ts-wsize score-wsize)
"Number of points have to be more than ~D = ts-wsize + score-wsize + 2*sdar-k."
(+ ts-wsize score-wsize (* 2 sdar-k)))
(assert (< 0d0 discount 1d0))
(let* ((dim (length (dataset-dimensions ts)))
(ts-sdar (ts-ar::init-sdar ts :ar-k sdar-k))
(last-pt-stats
(loop for i below sdar-k
as dvec = (ts-p-pos (aref (ts-points ts) i))
do (ts-ar::update-xt-array ts-sdar dvec)
finally (return (multiple-value-bind (mu s) (ts-ar::predict-sdar ts-sdar)
`(:pt-1 ,(multi-gaussian mu s) :pt nil)))))
(cf (make-instance 'changefinder
:n-dim dim :ts-model ts-sdar :last-pt-stats last-pt-stats
:pre-score-list (make-list ts-wsize)
:score-type score-type
:score-list (make-list score-wsize)
:discount discount
:score-wsize score-wsize
:ts-wsize ts-wsize)))
(flet ((smoothing (data-list wsize)
(loop for i from wsize to (length data-list)
as window = (subseq data-list (- i wsize) i)
collect (mean window))))
(let* ((train-for-score-model
(smoothing (map 'list (lambda (p) (update-ts-score cf (ts-p-pos p)))
(subseq (ts-points ts) sdar-k))
score-wsize))
(ts (make-constant-time-series-data '("smthed-score")
(map 'vector (lambda (v) (make-dvec 1 v))
train-for-score-model)))
(score-sdar (ts-ar::init-sdar ts :ar-k sdar-k))
(last-qt-stats
(loop for i below sdar-k
as dvec = (ts-p-pos (aref (ts-points ts) i))
do (ts-ar::update-xt-array score-sdar dvec)
finally (return (multiple-value-bind (mu s) (ts-ar::predict-sdar score-sdar)
`(:pt-1 ,(multi-gaussian mu s) :pt nil))))))
(setf (score-model cf) score-sdar
(last-qt-stats cf) last-qt-stats)
(loop for p across (subseq (ts-points ts) sdar-k) do
(update-score cf (ts-p-pos p)))
cf))))
;; online update changefinder
(defmethod update-changefinder ((cf changefinder) new-dvec)
(declare (type dvec new-dvec))
(assert (eql (n-dim cf) (length new-dvec)) () "wrong dimension number")
(update-ts-score cf new-dvec)
(update-score cf (make-dvec 1 (mean (pre-score-list cf)))) ;; 1st smoothing
(values (mean (score-list cf)) ;; 2nd smoothing
(car (last (score-list cf)))))
(defun score-calculation (pt-stats dvec score-type)
(declare (type dvec dvec))
(destructuring-bind (&key pt-1 pt &allow-other-keys) pt-stats
(ecase score-type
(:log (- (log (density pt-1 dvec))))
(:hellinger (hellinger-distance pt-1 pt)))))
(macrolet ((update-score (model stats score-list)
`(multiple-value-bind (new-mu new-sigma)
(ts-ar::update-sdar (,model cf) new-dvec :discount (discount cf))
(when (eq (score-type cf) :hellinger)
(setf (getf (,stats cf) :pt) (multi-gaussian new-mu new-sigma)))
(let ((score (score-calculation (,stats cf) new-dvec (score-type cf))))
(setf (,score-list cf) (append (cdr (,score-list cf)) (list score)))
(multiple-value-bind (new-mu new-sigma) (ts-ar::predict-sdar (,model cf))
(setf (getf (,stats cf) :pt-1) (multi-gaussian new-mu new-sigma)))
score))))
(defmethod update-ts-score ((cf changefinder) new-dvec)
(declare (type dvec new-dvec))
(update-score ts-model last-pt-stats pre-score-list))
(defmethod update-score ((cf changefinder) new-dvec)
(declare (type (simple-array double-float (1)) new-dvec))
(check-type new-dvec (simple-array double-float (1)))
(update-score score-model last-qt-stats score-list)))
;; multi-dimensional gaussian mixture
(defclass multi-gaussian (statistics::continuous-distribution)
((mean :initarg :mean :reader mean)
(sigma :initarg :sigma :reader sigma)))
(defun multi-gaussian (mean sigma)
(make-instance 'multi-gaussian :mean mean :sigma sigma))
(defmethod density ((d multi-gaussian) x)
(multivariate-normal-density (mean d) (sigma d) x))
(defparameter *stabilizer* 1d-2)
(defun multivariate-normal-density (mu sigma vec &optional m)
(declare (type dvec mu vec) (type dmat sigma))
(setf mu (round-vec mu) vec (round-vec vec)
sigma (mcm (round-mat sigma) (diag (array-dimension sigma 0) *stabilizer*) :c #'+))
;; (noise-on-diag (round-mat sigma) :order *stabilizer*)
(let* ((dim (array-dimension sigma 0))
(det (det sigma))
(inv (if (>= 0d0 det)
(error "sigma must be positive definite: det = ~A" det) ;; positive definite check
(m^-1 sigma)))
(coef (/ (* (expt (* 2d0 pi) (/ (if (numberp m) m dim) 2)) (sqrt det))))
(in-exp (calc-in-exp inv mu vec)))
(declare (type double-float coef in-exp))
(* coef (handler-case (exp in-exp)
(floating-point-underflow (c) (declare (ignore c))
(warn "MND underflow: in-exp:~A" in-exp) least-positive-double-float)
(floating-point-overflow (c) (declare (ignore c))
(warn "MND overflow: in-exp:~A" in-exp) most-positive-double-float)))))
(defun calc-in-exp (inv-sigma mu vec)
(let* ((dim (length mu))
(x-m (vcv vec mu :c #'-))
(x-mx-m (make-array `(,dim ,dim) :element-type 'double-float))
(res (make-array `(,dim ,dim) :element-type 'double-float)))
(loop for col below dim
as val1 = (aref x-m col)
do (loop for row below dim
as val = (* val1 (aref x-m row))
do (setf (aref x-mx-m col row) val)))
(mkl.blas:dgemm "N" "N" dim dim dim -0.5d0 inv-sigma dim x-mx-m dim 0d0 res dim)
(tr res)))
;; hellinger score
(defmethod hellinger-distance ((pt-1 multi-gaussian) (pt multi-gaussian))
(flet ((safe-exp (d) (declare (type double-float d))
(handler-case (exp d)
(FLOATING-POINT-UNDERFLOW (c) (declare (ignore c)) 0d0)))
(safe-det (mat) (declare (type dmat mat))
(let ((val (det mat)))
(cond ((< -1d-12 val 1d-12) 0d0)
((minusp val) (error "~A is not positive definite." mat))
(t val))))
(safe-log (val) (declare (type double-float val))
(if (zerop val) *-inf* (log val))))
(with-accessors ((m mean) (%%s sigma)) pt-1
(with-accessors ((mm mean) (%%ss sigma)) pt
(let* ((dim (length m))
(%s (mcm %%s (diag dim *stabilizer*)))
(%ss (mcm %%ss (diag dim *stabilizer*)))
(s (m^-1 %s))
(ss (m^-1 %ss))
(s+ss (mcm s ss :c #'+))
(sm (m*v s m))
(ssmm (m*v ss mm)))
(- 2d0 (safe-exp
(+ (+ (log 2d0) (* -0.5d0 (safe-log (safe-det (c*mat 0.5d0 (copy-mat s+ss))))))
(- (* 0.25d0 (log (safe-det %s))))
(- (* 0.25d0 (log (safe-det %ss))))
(* 0.5d0 (inner-product (vcv sm ssmm :c #'+)
(m*v (m^-1 s+ss) (vcv sm ssmm :c #'+))))
(* -0.5d0 (+ (inner-product m sm)
(inner-product mm ssmm)))))))))))
;; 値を丸める
(defun round-value (value &key (precision 1e-12))
(dfloat (* precision (round value precision))))
;; ベクトルの各値を丸める
(defun round-vec (vec)
(do-vec (val vec :type double-float :setf-var sf :return vec)
(setf sf (round-value val))))
;; 行列の各値を丸める
(defun round-mat (mat &optional (precision 1e-12))
(assert (> 1 precision))
(loop for i below (array-dimension mat 0)
do (loop for j below (array-dimension mat 1)
as val = (round-value (aref mat i j) :precision precision)
do (setf (aref mat i j) val))
finally (return mat)))