-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodels.py
341 lines (241 loc) · 13.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from __future__ import absolute_import, division, print_function
import argparse
import csv
import logging
import os
import random
import pickle
import sys
from global_config import *
import math
from torch.nn.utils.rnn import pad_sequence
import copy
import numpy as np
from sklearn.metrics.pairwise import cosine_distances
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from transformers import (
AlbertModel,
AlbertPreTrainedModel,
AlbertConfig,
load_tf_weights_in_albert,
)
from transformers.modeling_albert import AlbertEmbeddings, AlbertLayerGroup
"""
Implementation taken from:
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
"""
class Transformer(nn.Module):
def __init__(self, d_model, num_layers=1, nhead=1, dropout=0.1, dim_feedforward=128, max_seq_length=5000):
super(Transformer, self).__init__()
self.d_model = d_model
self.pos_encoder = nn.Embedding(max_seq_length, d_model)
self.encoder = TransformerEncoder(TransformerLayer(d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout), num_layers=num_layers)
self.decoder = nn.Linear(d_model, 1)
self.norm = nn.LayerNorm(d_model)
def forward(self, input, attention_mask=None):
seq_length = input.size()[1]
position_ids = torch.arange(seq_length, dtype=torch.long, device=input.device)
positions_embedding = self.pos_encoder(position_ids).unsqueeze(0).expand(input.size()) # (seq_length, d_model) => (batch_size, seq_length, d_model)
input = input + positions_embedding
input = self.norm(input)
hidden = self.encoder(input, attention_mask=attention_mask)
out = self.decoder(hidden) # (batch_size, seq_len, hidden_dim)
out = (out[:,0,:], out, hidden) # ([CLS] token embedding, full output, last hidden layer)
return out
class TransformerLayer(nn.Module):
def __init__(self, hidden_size, nhead=1, dim_feedforward=128, dropout=0.1):
super(TransformerLayer, self).__init__()
self.self_attention = Attention(hidden_size, nhead, dropout)
self.fc = nn.Sequential(nn.Linear(hidden_size, dim_feedforward), nn.ReLU(), nn.Linear(dim_feedforward, hidden_size))
self.norm1 = nn.LayerNorm(hidden_size)
self.norm2 = nn.LayerNorm(hidden_size)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, src, attention_mask=None):
src_1 = self.self_attention(src, src, attention_mask=attention_mask)
src = src + self.dropout1(src_1)
src = self.norm1(src)
src_2 = self.fc(src)
src = src + self.dropout2(src_2)
src = self.norm2(src)
return src
class TransformerEncoder(nn.Module):
def __init__(self, layer, num_layers):
super(TransformerEncoder, self).__init__()
self.layers = _get_clones(layer, num_layers)
def forward(self, src, attention_mask=None):
for layer in self.layers:
new_src = layer(src, attention_mask=attention_mask)
src = src + new_src
return src
class Attention(nn.Module):
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, ctx_dim=None):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, num_attention_heads))
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
# visual_dim = 2048
if ctx_dim is None:
ctx_dim = hidden_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(ctx_dim, self.all_head_size)
self.value = nn.Linear(ctx_dim, self.all_head_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, context, attention_mask=None):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(context)
mixed_value_layer = self.value(context)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class CrossAttentionLayer(nn.Module):
def __init__(self, hidden_size, context_size, nhead=1, dropout=0.1):
super(CrossAttentionLayer, self).__init__()
self.src_cross_attention = Attention(hidden_size, nhead, dropout, ctx_dim=context_size)
self.context_cross_attention = Attention(context_size, nhead, dropout, ctx_dim=hidden_size)
self.self_attention = Attention(hidden_size + context_size, nhead, dropout)
self.fc = nn.Sequential(nn.Linear(hidden_size + context_size, hidden_size + context_size), nn.ReLU())
self.norm1 = nn.LayerNorm(hidden_size + context_size)
self.norm2 = nn.LayerNorm(hidden_size + context_size)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, src, context, attention_mask=None):
new_src = self.src_cross_attention(src, context, attention_mask=attention_mask)
new_context = self.context_cross_attention(context, src, attention_mask=attention_mask)
cross_src = torch.cat((new_src, new_context), dim=2)
cross_src_1 = self.self_attention(cross_src, cross_src, attention_mask)
cross_src = cross_src + self.dropout1(cross_src_1)
cross_src = self.norm1(cross_src)
cross_src_2 = self.fc(cross_src)
cross_src = cross_src + self.dropout2(cross_src_2)
cross_src = self.norm2(cross_src)
return cross_src
class CrossAttentionEncoder(nn.Module):
def __init__(self, layer, num_layers):
super(CrossAttentionEncoder, self).__init__()
self.layers = _get_clones(layer, num_layers)
def forward(self, src, context, attention_mask=None):
src_dim = src.size()[2]
context_dim = context.size()[2]
for layer in self.layers:
output = layer(src, context, attention_mask=attention_mask)
new_src = output[:,:,0:src_dim]
new_context = output[:,:,src_dim:src_dim+context_dim]
src = src + new_src
context = context + new_context
return output
#this version use multiple layer of cross attention
class HKTMultiLayerCrossAttn(nn.Module):
def __init__(self, text_model, visual_model, acoustic_model,hcf_model, args, dropout=0.1,fusion_dim=128):
super(HKTMultiLayerCrossAttn, self).__init__()
self.newly_added_config=args
self.text_model = text_model
self.visual_model = visual_model
self.acoustic_model = acoustic_model
self.hcf_model = hcf_model
L_AV_layer = CrossAttentionLayer((LANGUAGE_DIM+HCF_DIM), ACOUSTIC_DIM+VISUAL_DIM, nhead=args.cross_n_heads, dropout=args.dropout)
self.L_AV = CrossAttentionEncoder(L_AV_layer, args.cross_n_layers)
total_dim = 2 * (LANGUAGE_DIM+HCF_DIM+ ACOUSTIC_DIM + VISUAL_DIM )
self.fc = nn.Sequential(nn.Linear(total_dim, args.fusion_dim),
nn.ReLU(),
nn.Dropout(args.dropout),
nn.Linear(args.fusion_dim, 1))
def get_params(self):
acoustic_params=list(self.acoustic_model.named_parameters())
visual_params=list(self.visual_model.named_parameters())
hcf_params=list(self.hcf_model.named_parameters())
other_params=list(self.text_model.named_parameters())+list(self.L_AV.named_parameters())+list(self.fc.named_parameters())
return acoustic_params,visual_params,hcf_params,other_params
def forward(self, input_ids, visual, acoustic,hcf, attention_mask=None, token_type_ids=None):
(text_output, _) = self.text_model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
(_, _, visual_output) = self.visual_model(visual)
(_, _, acoustic_output) = self.acoustic_model(acoustic)
(_, _, hcf_output) = self.hcf_model(hcf)
text_hcf=torch.cat((text_output,hcf_output),dim=2)
# attention mask conversion
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
av_output=torch.cat((acoustic_output,visual_output),dim=2)
noverbal_text=self.L_AV(text_hcf, av_output, attention_mask=extended_attention_mask)
# Extract embeddings
text_embedding = text_hcf[:,0,:] # [CLS] token
visual_embedding = F.max_pool1d(visual_output.permute(0,2,1).contiguous(), visual_output.shape[1]).squeeze(-1)
acoustic_embedding = F.max_pool1d(acoustic_output.permute(0,2,1).contiguous(),acoustic_output.shape[1]).squeeze(-1)
L_AV_embedding = F.max_pool1d(noverbal_text.permute(0,2,1).contiguous(),noverbal_text.shape[1]).squeeze(-1)
#print(weighted_vad_emb.shape)
fusion = (text_embedding, visual_embedding, acoustic_embedding,L_AV_embedding)
fused_hidden = torch.cat(fusion, dim=1)
out = self.fc(fused_hidden)
return (out, fused_hidden)
class HKT(nn.Module):
def __init__(self, text_model, visual_model, acoustic_model,hcf_model, args, dropout=0.1,fusion_dim=128):
super(HKT, self).__init__()
self.newly_added_config=args
self.text_model = text_model
self.visual_model = visual_model
self.acoustic_model = acoustic_model
self.hcf_model = hcf_model
self.L_AV = CrossAttentionLayer(LANGUAGE_DIM+HCF_DIM, ACOUSTIC_DIM+VISUAL_DIM, nhead=args.cross_n_heads, dropout=args.dropout)
total_dim = 2 * (LANGUAGE_DIM+HCF_DIM + ACOUSTIC_DIM + VISUAL_DIM )
self.fc = nn.Sequential(nn.Linear(total_dim, args.fusion_dim),
nn.ReLU(),
nn.Dropout(args.dropout),
nn.Linear(args.fusion_dim, 1))
def get_params(self):
acoustic_params=list(self.acoustic_model.named_parameters())
visual_params=list(self.visual_model.named_parameters())
hcf_params=list(self.hcf_model.named_parameters())
other_params=list(self.text_model.named_parameters())+list(self.L_AV.named_parameters())+list(self.fc.named_parameters())
return acoustic_params,visual_params,hcf_params,other_params
def forward(self, input_ids, visual, acoustic,hcf, attention_mask=None, token_type_ids=None):
(text_output, _) = self.text_model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
(_, _, visual_output) = self.visual_model(visual)
(_, _, acoustic_output) = self.acoustic_model(acoustic)
(_, _, hcf_output) = self.hcf_model(hcf)
text_hcf=torch.cat((text_output,hcf_output),dim=2)
# attention mask conversion
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
av_output=torch.cat((acoustic_output,visual_output),dim=2)
noverbal_text=self.L_AV(text_hcf, av_output, attention_mask=extended_attention_mask)
# Extract embeddings
text_embedding = text_hcf[:,0,:] # [CLS] token
visual_embedding = F.max_pool1d(visual_output.permute(0,2,1).contiguous(), visual_output.shape[1]).squeeze(-1)
acoustic_embedding = F.max_pool1d(acoustic_output.permute(0,2,1).contiguous(),acoustic_output.shape[1]).squeeze(-1)
L_AV_embedding = F.max_pool1d(noverbal_text.permute(0,2,1).contiguous(),noverbal_text.shape[1]).squeeze(-1)
fusion = (text_embedding, visual_embedding, acoustic_embedding,L_AV_embedding)
fused_hidden = torch.cat(fusion, dim=1)
out = self.fc(fused_hidden)
return (out, fused_hidden)
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])