forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_vmap_plumbing.py
264 lines (212 loc) · 8.94 KB
/
gen_vmap_plumbing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import textwrap
from dataclasses import dataclass
from typing import List, Optional, Sequence, Tuple
from torchgen.api.translate import translate
from torchgen.api.types import DispatcherSignature
from torchgen.context import method_with_native_function
from torchgen.model import (
Argument,
BaseTy,
BaseType,
FunctionSchema,
ListType,
NativeFunction,
OptionalType,
Return,
SchemaKind,
Type,
)
from torchgen.utils import mapMaybe
def is_tensor(typ: Type) -> bool:
return isinstance(typ, BaseType) and typ.name == BaseTy.Tensor
def is_optional_tensor(typ: Type) -> bool:
return isinstance(typ, OptionalType) and is_tensor(typ.elem)
def is_tensor_list(typ: Type) -> bool:
return isinstance(typ, ListType) and is_tensor(typ.elem)
def unwrap_tensor(name: str, cur_level_var: str) -> List[str]:
result = f"""\
Tensor {name}_value;
optional<int64_t> {name}_bdim;
std::tie({name}_value, {name}_bdim) = unwrapTensorAtLevel({name}, {cur_level_var});"""
return textwrap.dedent(result).split("\n")
def unwrap_optional_tensor(name: str, cur_level_var: str) -> List[str]:
result = f"""\
optional<Tensor> {name}_value;
optional<int64_t> {name}_bdim;
if ({name}) {{
std::tie({name}_value, {name}_bdim) = unwrapTensorAtLevel({name}.value(), {cur_level_var});
}}"""
return textwrap.dedent(result).split("\n")
def gen_unwraps(
flat_arguments: Sequence[Argument], cur_level_var: str
) -> Tuple[str, List[str]]:
arg_names = [a.name for a in flat_arguments]
arg_types = [a.type for a in flat_arguments]
tensors = [name for typ, name in zip(arg_types, arg_names) if is_tensor(typ)]
optional_tensors = [
name for typ, name in zip(arg_types, arg_names) if is_optional_tensor(typ)
]
unwraps = []
for tensor in tensors:
unwraps += unwrap_tensor(tensor, cur_level_var)
for opt_tensor in optional_tensors:
unwraps += unwrap_optional_tensor(opt_tensor, cur_level_var)
unwrap_code = "\n".join(unwraps)
unwrapped_arg_list = []
for arg in arg_names:
if arg in tensors or arg in optional_tensors:
unwrapped_arg_list += [f"{arg}_value", f"{arg}_bdim"]
else:
unwrapped_arg_list.append(arg)
return unwrap_code, unwrapped_arg_list
def gen_case_where_all_bdims_are_none(
outer_sig: DispatcherSignature, schema: FunctionSchema, cur_level_var: str
) -> str:
conditions = []
flat_args = schema.arguments.flat_all
for arg in flat_args:
if not arg.type.is_tensor_like():
continue
conditions.append(f"!isBatchedAtLevel({arg.name}, {cur_level_var})")
sig = DispatcherSignature.from_schema(schema)
translated_args = ", ".join(
e.expr for e in translate(outer_sig.arguments(), sig.arguments())
)
return f"""\
if ({' && '.join(conditions)}) {{
return at::_ops::{sig.func.name.unambiguous_name()}::call({translated_args});
}}"""
def gen_returns(
returns: Tuple[Return, ...], cur_level_var: str, results_var: str
) -> str:
idx = 0
wrapped_returns = []
for ret in returns:
if is_tensor(ret.type):
wrapped_returns.append(
f"makeBatched(std::get<{idx}>({results_var}), std::get<{idx + 1}>({results_var}), {cur_level_var})"
)
idx += 2
elif is_tensor_list(ret.type):
wrapped_returns.append(
f"makeBatchedVector(std::get<{idx}>({results_var}), std::get<{idx+1}>({results_var}), {cur_level_var})"
)
idx += 2
else:
wrapped_returns.append(f"std::get<{idx}>({results_var})")
idx += 1
if len(wrapped_returns) == 1:
result = f"return {wrapped_returns[0]};"
else:
result = f'return std::make_tuple({", ".join(wrapped_returns)});'
return result
def accepts_at_least_one_tensor_input(schema: FunctionSchema) -> bool:
return any(a.type.is_tensor_like() for a in schema.arguments.flat_all)
def is_mutated_arg(argument: Argument) -> bool:
return argument.annotation is not None and argument.annotation.is_write
def gen_vmap_inplace_plumbing(native_function: NativeFunction) -> Optional[str]:
# Assumptions:
# - only one argument is being modified in-place
# - the argument that is being modified in-place is the first argument
# - all returns are either Tensor, tuple of Tensor, or TensorList
schema = native_function.func
sig = DispatcherSignature.from_schema(schema)
returns = schema.returns
# Check assumptions. If these are invalid we return None
# and punt the work to handle them to the future.
assert schema.kind() == SchemaKind.inplace
if not is_mutated_arg(schema.arguments.flat_all[0]):
return None
if not len([arg for arg in schema.arguments.flat_all if is_mutated_arg(arg)]) == 1:
return None
# Only support cases where all returns are Tensors or vector<Tensor>
if len(returns) == 0:
return None
if not all(is_tensor(ret.type) or is_tensor_list(ret.type) for ret in returns):
return None
if not accepts_at_least_one_tensor_input(schema):
return None
cur_level_var = "cur_level"
unwraps, unwrapped_arg_list = gen_unwraps(schema.arguments.flat_all, cur_level_var)
bdims_all_none_case = gen_case_where_all_bdims_are_none(sig, schema, cur_level_var)
return f"""\
template <typename batch_rule_t, batch_rule_t batch_rule>
{sig.decl(name=schema.name.unambiguous_name() + '_generated_plumbing')} {{
c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
auto maybe_layer = maybeCurrentDynamicLayer();
vmap_check_escaped(maybe_layer, "gen_vmap_inplace_plumbing");
int64_t {cur_level_var} = maybe_layer->layerId();
{textwrap.indent(bdims_all_none_case, " ")}
{textwrap.indent(unwraps, " ")}
batch_rule({', '.join(unwrapped_arg_list)});
return {schema.arguments.flat_all[0].name};
}}"""
def gen_vmap_plumbing_no_returns(native_function: NativeFunction) -> str:
schema = native_function.func
sig = DispatcherSignature.from_schema(schema)
cur_level_var = "cur_level"
unwraps, unwrapped_arg_list = gen_unwraps(schema.arguments.flat_all, cur_level_var)
bdims_all_none_case = gen_case_where_all_bdims_are_none(sig, schema, cur_level_var)
return f"""\
template <typename batch_rule_t, batch_rule_t batch_rule>
{sig.decl(name=schema.name.unambiguous_name() + '_generated_plumbing')} {{
c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
auto maybe_layer = maybeCurrentDynamicLayer();
vmap_check_escaped(maybe_layer, "gen_vmap_plumbing_no_returns");
int64_t {cur_level_var} = maybe_layer->layerId();
{textwrap.indent(bdims_all_none_case, " ")}
{textwrap.indent(unwraps, " ")}
batch_rule({', '.join(unwrapped_arg_list)});
}}"""
def gen_vmap_plumbing(native_function: NativeFunction) -> Optional[str]:
schema = native_function.func
sig = DispatcherSignature.from_schema(schema)
returns = schema.returns
# Only support cases where all returns are Tensors or vector<Tensor>
if not accepts_at_least_one_tensor_input(schema):
return None
if len(returns) == 0:
return gen_vmap_plumbing_no_returns(native_function)
if not all(ret.type.is_tensor_like() for ret in returns):
return None
# in-place views need special handling
if "inplace_view" in native_function.tags:
return None
if schema.kind() == SchemaKind.inplace:
return gen_vmap_inplace_plumbing(native_function)
# Don't support these (mutable, out, scratch)
if schema.kind() != SchemaKind.functional:
return None
results_var = "results"
cur_level_var = "cur_level"
unwraps, unwrapped_arg_list = gen_unwraps(schema.arguments.flat_all, cur_level_var)
bdims_all_none_case = gen_case_where_all_bdims_are_none(sig, schema, cur_level_var)
wrapped_returns = gen_returns(returns, cur_level_var, results_var)
return f"""\
template <typename batch_rule_t, batch_rule_t batch_rule>
{sig.decl(name=schema.name.unambiguous_name() + '_generated_plumbing')} {{
c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
auto maybe_layer = maybeCurrentDynamicLayer();
vmap_check_escaped(maybe_layer, "gen_vmap_plumbing");
int64_t {cur_level_var} = maybe_layer->layerId();
{textwrap.indent(bdims_all_none_case, " ")}
{textwrap.indent(unwraps, " ")}
auto {results_var} = batch_rule({', '.join(unwrapped_arg_list)});
{wrapped_returns}
}}"""
@dataclass(frozen=True)
class ComputeBatchRulePlumbing:
@method_with_native_function
def __call__(self, f: NativeFunction) -> Optional[str]:
result = gen_vmap_plumbing(f)
return result
def gen_all_vmap_plumbing(native_functions: Sequence[NativeFunction]) -> str:
body = "\n".join(list(mapMaybe(ComputeBatchRulePlumbing(), native_functions)))
return f"""
#pragma once
#include <ATen/Operators.h>
#include <ATen/functorch/PlumbingHelper.h>
namespace at {{ namespace functorch {{
{body}
}}}} // namespace at::functorch
"""