-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
157 lines (128 loc) · 5.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from __future__ import division, print_function
import numpy as np
from torch.autograd import Variable
from utils import calc_errors_torch
def train_model(
params,
model,
criterion,
optimizer,
scheduler,
dataloaders,
dataset_sizes,
postprocessor,
use_gpu,
):
for epoch in range(params.total_epochs):
val_loc_acc = []
val_force_acc = []
# Each epoch has a training and validation phase
for phase in ["train", "val"]:
if phase == "train":
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
# Iterate over data.
for i, (input_imgs, subs, inputs, labels) in enumerate(dataloaders[phase]):
# wrap them in Variable
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
if type(outputs) is tuple:
outputs = outputs[0]
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == "train":
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item()
batch_loss = running_loss / ((i + 1) * params.batch_size)
if phase == "train" and i % params.print_freq == 0:
if params.force_map == True:
loc_acc, force_acc = calc_errors_torch(
postprocessor.convert_map_to_vec(outputs),
postprocessor.convert_map_to_vec(labels),
)
else:
loc_acc, force_acc = calc_errors_torch(
postprocessor.undo_rescale(outputs),
postprocessor.undo_rescale(labels),
)
print(
"[Epoch {}/{}]-[batch:{}/{}] lr:{:.4f} {} Loss: {:.6f} Position Error: {:.4f} Force Error: {:.4f}".format(
epoch,
params.total_epochs - 1,
i,
round(dataset_sizes[phase] / params.batch_size) - 1,
scheduler.get_last_lr()[0],
phase,
batch_loss,
loc_acc,
force_acc,
)
)
if phase == "val" and i % params.print_freq == 0:
if params.force_map == True:
loc_acc, force_acc = calc_errors_torch(
postprocessor.convert_map_to_vec(outputs),
postprocessor.convert_map_to_vec(labels),
)
else:
loc_acc, force_acc = calc_errors_torch(
postprocessor.undo_rescale(outputs),
postprocessor.undo_rescale(labels),
)
val_loc_acc.append(loc_acc)
val_force_acc.append(force_acc)
if phase == "val":
print(
"[Epoch {}/{}] Vaildation Loss: {:.6f} Position Error: {:.4f} Force Error: {:.4f} ".format(
epoch,
params.total_epochs - 1,
batch_loss,
sum(val_loc_acc) / len(val_loc_acc),
sum(val_force_acc) / len(val_force_acc),
)
)
scheduler.step()
return model, optimizer, scheduler
def test_model(params, model, dataloader, postprocessor, use_gpu):
model.eval()
test_loc_acc_abs = []
test_force_acc_abs = []
for i, (input_imgs, subs, inputs, labels) in enumerate(dataloader):
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
input_imgs = input_imgs.cuda()
else:
inputs, labels = Variable(inputs), Variable(labels)
outputs = model(inputs)
if type(outputs) is tuple:
outputs = outputs[0]
if params.force_map == True:
loc_acc_abs, force_acc_abs = calc_errors_torch(
postprocessor.convert_map_to_vec(outputs),
postprocessor.convert_map_to_vec(labels),
)
else:
loc_acc_abs, force_acc_abs = calc_errors_torch(
postprocessor.undo_rescale(outputs), postprocessor.undo_rescale(labels)
)
test_loc_acc_abs.append(loc_acc_abs)
test_force_acc_abs.append(force_acc_abs)
mean_abs_loc_error = sum(np.abs(test_loc_acc_abs)) / len(test_loc_acc_abs)
mean_abs_force_error = sum(np.abs(test_force_acc_abs)) / len(test_force_acc_abs)
print(
"Test result: Localization error: {}, Force error: {}".format(
mean_abs_loc_error, mean_abs_force_error
)
)