-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassignment2.py
240 lines (186 loc) · 9.79 KB
/
assignment2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import numpy as np
np.set_printoptions(linewidth=10000, precision = 3, edgeitems= 100, suppress=True)
import matplotlib.pyplot as plt
plt.ion()
from scipy import ndimage
from six.moves.urllib.request import urlretrieve
from six.moves import cPickle as pickle
import tensorflow as tf
image_size = 28
num_labels = 10
batch_size = 128
def noop():
pass
def accuracy(predictions, labels):
acc = (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))/ predictions.shape[0])
return acc
def load_and_reformat_data():
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
def reformat(dataset, labels):
dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
#Turn labels in 1-hot encoding.
# Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
return (train_dataset, train_labels,
valid_dataset, valid_labels,
test_dataset, test_labels)
def sgd_1layer():
(train_dataset, train_labels,
valid_dataset, valid_labels,
test_dataset, test_labels) = load_and_reformat_data()
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
weights = tf.Variable(tf.truncated_normal([image_size * image_size, num_labels]))
biases = tf.Variable(tf.zeros([num_labels]))
# Training computation.
logits = tf.matmul(tf_train_dataset, weights) + biases
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(tf.matmul(tf_valid_dataset, weights) + biases)
test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)
num_steps = 3001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
noop()
def sdd_1hidden_layer():
(train_dataset, train_labels,
valid_dataset, valid_labels,
test_dataset, test_labels) = load_and_reformat_data()
#train_dataset = train_dataset[:batch_size*10,:]
#train_labels = train_labels[:batch_size*10,:]
n_input = image_size * image_size
n_hidden_1 = 4096
n_hidden_2 = 512
n_hidden_3 = 256
n_classes = num_labels
alpha = 0.1
graph = tf.Graph()
with graph.as_default():
X = tf.placeholder(tf.float32, shape=(batch_size, n_input))
Y = tf.placeholder(tf.float32, shape=(batch_size, n_classes))
keep_prob = tf.placeholder(tf.float32)
global_step = tf.Variable(0) # count the number of steps taken.
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3])),
'out': tf.Variable(tf.truncated_normal([n_hidden_3, n_classes]))
}
biases = {
'b1': tf.Variable(tf.zeros([n_hidden_1])),
'b2': tf.Variable(tf.zeros([n_hidden_2])),
'b3': tf.Variable(tf.zeros([n_hidden_3])),
'out': tf.Variable(tf.zeros([n_classes]))
}
def multilayer_perceptron(x):
layer_1 = tf.nn.relu(x @ weights['h1'] + biases['b1'])
drop_out_1 = tf.nn.dropout(layer_1, keep_prob)
layer_2 = tf.nn.relu(drop_out_1 @ weights['h2'] + biases['b2'])
drop_out_2 = tf.nn.dropout(layer_2, keep_prob)
layer_3 = tf.nn.relu(drop_out_2 @ weights['h3'] + biases['b3'])
drop_out_3 = tf.nn.dropout(layer_3, keep_prob)
out_layer = drop_out_3 @ weights['out'] + biases['out']
return out_layer
all_weights = tf.concat([tf.reshape(weights['h1'], [-1]),
tf.reshape(weights['h2'], [-1]),
tf.reshape(weights['out'], [-1])], axis=0)
logits = multilayer_perceptron(X)
loss = (tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y))
#+ alpha * (tf.nn.l2_loss(weights['h1']) + tf.nn.l2_loss(weights['out']))
+ alpha * tf.nn.l2_loss(all_weights)
)
#reg1 = tf.nn.l2_loss(all_weights)
#reg2 = tf.nn.l2_loss(weights['h1']) + tf.nn.l2_loss(weights['out'])
learning_rate = tf.train.exponential_decay(0.0005, global_step, 100, 0.96, staircase=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=global_step)
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(multilayer_perceptron(tf_valid_dataset))
test_prediction = tf.nn.softmax(multilayer_perceptron(tf_test_dataset))
num_steps = 3001
NUM_THREADS = 2
with tf.Session(graph=graph,
config=tf.ConfigProto(intra_op_parallelism_threads=NUM_THREADS)
) as session:
tf.global_variables_initializer().run()
print("Initialized")
for step in range(num_steps):
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
feed_dict = {X : batch_data, Y : batch_labels, keep_prob : 0.5}
_, l, predictions = session.run([train_op, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("learning rate:", learning_rate.eval())
print("Minibatch loss at step %d: %f" % (step, l))
#print("Minibatch reg1 at step %d: %f" % (step, reg1.eval(feed_dict=feed_dict)))
#print("Minibatch reg2 at step %d: %f" % (step, reg2.eval(feed_dict=feed_dict)))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(feed_dict={keep_prob : 1.0}), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(
test_prediction.eval(feed_dict={keep_prob : 1.0}), test_labels))
#_ = session.run([train_op], feed_dict=feed_dict)
#if (step % 500 == 0):
#print("Minibatch loss at step %d: %f" % (step, loss.eval(feed_dict=feed_dict)))
#print("Minibatch accuracy: %.1f%%" % accuracy(train_prediction.eval(feed_dict=feed_dict), batch_labels))
#print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(), valid_labels))
#print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
noop()
if __name__ == "__main__":
#sgd_1layer()
sdd_1hidden_layer()