-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathquality_dataset.py
46 lines (37 loc) · 1.46 KB
/
quality_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
from torch.utils.data import Dataset
import numpy as np
import csv
import random
from config import *
import itertools
import torch
from skimage import io
import os
class QualityDataset(Dataset):
def __init__(self, return_hashes=False):
self.label_count = 3
file = open(QUALITY_DATA_FILENAME, 'r')
reader = csv.reader(file)
self.ids_by_label = [[] for i in range(self.label_count)]
for row in reader:
label = int(row[1])
id = row[0]
if os.path.isfile('data/images_rotated_128/{:s}.jpg'.format(id)):
self.ids_by_label[label].append(id)
print('Items in quality ground truth dataset:', [len(x) for x in self.ids_by_label])
self.shuffle()
def shuffle(self):
size = min(len(i) for i in self.ids_by_label)
ids = list(itertools.chain(*[random.sample(population, size) for population in self.ids_by_label]))
indices = list(range(size * self.label_count))
random.shuffle(indices)
self.ids = [ids[i] for i in indices]
self.labels = [i // size for i in indices]
def __len__(self):
return len(self.ids)
def __getitem__(self, index):
image = io.imread('data/images_rotated_128/{:s}.jpg'.format(self.ids[index]))
image = image.transpose((2, 0, 1)).astype(np.float32) / 255
image = torch.from_numpy(image)
return image, self.labels[index], self.ids[index]