-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcond_mnist.py
103 lines (82 loc) · 3.28 KB
/
cond_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import logging
from collections import deque
import visdom
import numpy as np
import torch
from torch import optim
import torchvision
from model import MnistCondEnergyNN
def initialize_replay_buffer(replay_buffer, n=32):
x = torch.rand(n, 1, 28, 28)
y = torch.randint(0, 10, (n, 1))
for i in range(n):
replay_buffer.append((x[i], y[i]))
def sample_from_replay_buffer(replay_buffer, n=32):
x_negative = torch.rand(n, 1, 28, 28)
y_negative = torch.randint(0, 10, (n, 1))
idx_samples = []
n_samples = np.random.binomial(n, 0.95)
idx_samples = np.random.choice(range(len(replay_buffer)),
size=n_samples, replace=False)
for i, idx in enumerate(idx_samples):
x_negative[i] = replay_buffer[idx][0]
y_negative[i] = replay_buffer[idx][1]
return x_negative, y_negative
def update_replay_buffer(replay_buffer, batch):
x, y = batch
for i in range(x.shape[0]):
replay_buffer.append((x[i], y[i]))
def langevin_rollout(x_negative, y_negative, energy_nn, step_size, lambda_var, K):
x_negative = x_negative.requires_grad_(True)
for k in range(K):
energy_nn(x_negative, y_negative).sum().backward()
with torch.no_grad():
x_negative.grad.clamp_(-0.01, 0.01)
x_negative -= step_size * x_negative.grad / 2
x_negative += lambda_var * torch.randn(*x_negative.shape).to(device)
x_negative.clamp_(0, 1)
x_negative.grad.zero_()
return x_negative.requires_grad_(False)
def loss_fn(x_positive, y_positive, x_negative, y_negative, energy_nn, alpha):
x_positive_energy = energy_nn(x_positive, y_positive)
x_negative_energy = energy_nn(x_negative, y_negative)
loss_l2 = alpha * (x_positive_energy.pow(2) + x_negative_energy.pow(2)).mean()
loss_ml = (x_positive_energy - x_negative_energy).mean()
return loss_l2 + loss_ml, loss_l2.item(), loss_ml.item()
device = 'cuda:0'
K = 60
step_size = 20
lambda_var = 0.01
alpha = 1
lr = 0.001
batch_size = 128
energy_nn = MnistCondEnergyNN().to(device)
optimizer = optim.Adam(energy_nn.parameters())
replay_buffer = deque(maxlen=1000)
initialize_replay_buffer(replay_buffer, n=batch_size)
data_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('.', transform=torchvision.transforms.ToTensor(), download=True),
batch_size=batch_size,
shuffle=True,
num_workers=2)
viz = visdom.Visdom()
logging.basicConfig(filename='mnist.log', level=logging.DEBUG)
it = 0
while True:
x_positive, y_positive = next(iter(data_loader))
x_negative, y_negative = sample_from_replay_buffer(replay_buffer, n=batch_size)
x_positive = x_positive.to(device)
y_positive = y_positive.to(device)
x_negative = x_negative.to(device)
y_negative = y_negative.to(device)
langevin_rollout(x_negative, y_negative, energy_nn, step_size, lambda_var, K)
update_replay_buffer(replay_buffer, (x_negative.to('cpu'), y_negative.to('cpu')))
if it % 1000 == 0:
viz.images(x_negative)
optimizer.zero_grad()
loss, loss_l2, loss_ml = loss_fn(x_positive, y_positive, x_negative, y_negative, energy_nn, alpha)
logging.info('%f,%f' % (loss_l2, loss_ml))
loss.backward()
torch.nn.utils.clip_grad_value_(energy_nn.parameters(), 0.01)
optimizer.step()
it += 1