-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy patheltwise_product.py
70 lines (53 loc) · 2.86 KB
/
eltwise_product.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from keras.layers.core import Layer, InputSpec
from keras import constraints, regularizers, initializations, activations
import keras.backend as K
import theano.tensor as T
class EltWiseProduct(Layer):
def __init__(self, downsampling_factor=10, init='glorot_uniform', activation='linear',
weights=None, W_regularizer=None, activity_regularizer=None,
W_constraint=None, input_dim=None, **kwargs):
self.downsampling_factor = downsampling_factor
self.init = initializations.get(init)
self.activation = activations.get(activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.initial_weights = weights
self.input_dim = input_dim
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
self.input_spec = [InputSpec(ndim=4)]
super(EltWiseProduct, self).__init__(**kwargs)
def build(self, input_shape):
self.W = self.init([s // self.downsampling_factor for s in input_shape[2:]])
self.trainable_weights = [self.W]
self.regularizers = []
if self.W_regularizer:
self.W_regularizer.set_param(self.W)
self.regularizers.append(self.W_regularizer)
if self.activity_regularizer:
self.activity_regularizer.set_layer(self)
self.regularizers.append(self.activity_regularizer)
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.constraints = {}
if self.W_constraint:
self.constraints[self.W] = self.W_constraint
def get_output_shape_for(self, input_shape):
return input_shape
def call(self, x, mask=None):
output = x*T.nnet.abstract_conv.bilinear_upsampling(K.expand_dims(K.expand_dims(1 + self.W, 0), 0), self.downsampling_factor, 1, 1)
return output
def get_config(self):
config = {'name': self.__class__.__name__,
'output_dim': self.input_dim,
'init': self.init.__name__,
'activation': self.activation.__name__,
'W_regularizer': self.W_regularizer.get_config() if self.W_regularizer else None,
'activity_regularizer': self.activity_regularizer.get_config() if self.activity_regularizer else None,
'W_constraint': self.W_constraint.get_config() if self.W_constraint else None,
'input_dim': self.input_dim,
'downsampling_factor': self.downsampling_factor}
base_config = super(EltWiseProduct, self).get_config()
return dict(list(base_config.items()) + list(config.items()))