-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo_train.py
179 lines (149 loc) · 7.16 KB
/
ppo_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import datetime
import json
import os
import sys
from typing import List
import fire
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification, BitsAndBytesConfig
from tqdm import tqdm
from trl import PPOTrainer, PPOConfig
from utils.datasets import load_ppo_data
from utils.models import get_transformers_tokenizer, get_ppo_model, get_transformers_model
import warnings
# disable warnings
warnings.filterwarnings("ignore")
def collator(data):
return {key: [d[key] for d in data] for key in data[0]}
def train(
# model/data params
base_model: str = "", # the only required argument
rm_model: str = "",
dataset_name: str = "dsp",
data_dir: str = "data/dsp/dsp_academy_pairs.train.json",
output_dir: str = "./logs",
# lora hyperparams
lora_r: int = 0,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
# training hyperparams
cutoff_len: int = 512,
add_eos_token: bool = False,
batch_size: int = 128,
micro_batch_size: int = 4,
num_epochs: int = 3,
total_steps: int = 300,
learning_rate: float = 3e-4,
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
):
# Initialize & preprocess configs
assert base_model, "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
gradient_accumulation_steps = batch_size // micro_batch_size
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
local_rank = int(os.environ.get("LOCAL_RANK", 0))
device_map = {"": local_rank}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
torch.cuda.set_device(local_rank) # Set the current process to use the correct GPU
# Check if parameter passed or if set within environ
use_wandb = len(wandb_project) > 0 or ("WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0)
if use_wandb:
wandb_run_name = datetime.datetime.now().strftime("%Y%m%d-%H%M") if len(wandb_run_name) == 0 else f"{wandb_run_name}-{datetime.datetime.now().strftime('%Y%m%d-%H%M')}"
# Only overwrite environ if wandb param passed
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = wandb_project
if len(wandb_watch) > 0:
os.environ["WANDB_WATCH"] = wandb_watch
if len(wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
# output_dir = os.path.join(output_dir, wandb_run_name if len(wandb_run_name) > 0 else datetime.datetime.now().strftime("%Y%m%d-%H%M"))
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
configs = dict(**locals())
print(f"Training Q-Adapter model with params:\n" + "\n".join([f"{k}: {v}" for k, v in configs.items()]) + "\n")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
# Load data
_, train_data, val_data = load_ppo_data(dataset_name=dataset_name, data_dir=data_dir, tokenizer=tokenizer, cutoff_len=cutoff_len, add_eos_token=add_eos_token)
model, ref_model = get_ppo_model(base_model, tokenizer, lora_r, lora_alpha, lora_dropout, device_map=device_map, load_in_8bit=lora_r > 0)
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
os.makedirs(output_dir, exist_ok=True)
json.dump(configs, open(os.path.join(output_dir, "training_config.json"), "w"), indent=4, ensure_ascii=False)
reward_model = AutoModelForSequenceClassification.from_pretrained(rm_model, torch_dtype=torch.float16, quantization_config=BitsAndBytesConfig(load_in_8bit=True), device_map=device_map)
sentiment_pipe = transformers.pipeline("text-classification", model=reward_model, tokenizer=tokenizer, device_map=device_map)
sent_kwargs = {"return_all_scores": True, "function_to_apply": "none", "batch_size": 16}
# Some tokenizers like GPT-2's don't have a padding token by default, so we set one here.
if sentiment_pipe.tokenizer.pad_token_id is None:
sentiment_pipe.tokenizer.pad_token_id = tokenizer.pad_token_id
if sentiment_pipe.model.config.pad_token_id is None:
sentiment_pipe.model.config.pad_token_id = tokenizer.pad_token_id
learning_rate = learning_rate if lora_r > 0 else 5e-5
ppo_config = PPOConfig(
exp_name=wandb_run_name,
task_name=wandb_run_name,
steps=total_steps,
learning_rate=learning_rate,
batch_size=micro_batch_size*gradient_accumulation_steps,
mini_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
)
generation_kwargs = {
"min_length": -1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"max_new_tokens": 128,
}
ppo_trainer = PPOTrainer(
config=ppo_config,
model=model,
ref_model=ref_model,
tokenizer=tokenizer,
dataset=train_data,
data_collator=collator
)
model.config.use_cache = False
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
if lora_r == 0:
ref_model = torch.compile(ref_model)
print(f"Epoch length: {len(ppo_trainer.dataloader)}")
exp_end = False
for _ in range(num_epochs):
for _epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)):
query_tensors = [input_ids.to(ppo_trainer.model.current_device) for input_ids in batch["input_ids"]]
# Get response from gpt2
response_tensors, ref_response_tensors = ppo_trainer.generate(
query_tensors, return_prompt=False, generate_ref_response=True, **generation_kwargs
)
batch["response"] = tokenizer.batch_decode(response_tensors)
batch["ref_response"] = tokenizer.batch_decode(ref_response_tensors)
# Compute sentiment score
texts = [q + r for q, r in zip(batch["query"], batch["response"])]
pipe_outputs = sentiment_pipe(texts, **sent_kwargs)
rewards = [torch.tensor(output[1]["score"]).to(ppo_trainer.model.current_device) for output in pipe_outputs]
ref_texts = [q + r for q, r in zip(batch["query"], batch["ref_response"])]
ref_pipe_outputs = sentiment_pipe(ref_texts, **sent_kwargs)
ref_rewards = [torch.tensor(output[1]["score"]) for output in ref_pipe_outputs]
batch["ref_rewards"] = ref_rewards
# Run PPO step
stats = ppo_trainer.step(query_tensors, response_tensors, rewards)
ppo_trainer.log_stats(stats, batch, rewards, columns_to_log=["query", "response", "ref_response", "ref_rewards"])
if _epoch >= total_steps - 1:
exp_end = True
break
if exp_end:
break
ppo_trainer.save_pretrained(output_dir)
print("\n If there's a warning about missing keys above, please disregard :)")
if __name__ == "__main__":
fire.Fire(train)