-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathplot_pr.py
58 lines (48 loc) · 2.23 KB
/
plot_pr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np, argparse, pickle
import matplotlib; matplotlib.use('agg')
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve, average_precision_score
import pdb
def loadData(path):
preds = pickle.load(open(path, 'rb'))
y_hot = np.array(preds['y_hot'])
logit_list = np.array(preds['logit_list'])
y_hot_new = np.reshape(np.array([x[1:] for x in y_hot]), (-1))
logit_list_new = np.reshape(np.array([x[1:] for x in logit_list]), (-1))
return y_hot_new, logit_list_new
def plotPR(dataset):
y_true, y_scores = loadData('./results/{}/precision_recall.pkl'.format(args.name))
precision,recall,threshold = precision_recall_curve(y_true,y_scores)
area_under = average_precision_score(y_true, y_scores)
baselines_path = './baselines_pr/{}/'.format(dataset)
print('Area under the curve: {:.3}'.format(area_under))
plt.plot(recall[:], precision[:], label='RESIDE', color ='red', lw=1, marker = 'o', markevery = 0.1, ms = 6)
if dataset == 'riedel_nyt':
base_list = ['BGWA', 'PCNN+ATT', 'PCNN', 'MIMLRE', 'MultiR', 'Mintz']
color = ['purple', 'darkorange', 'green', 'xkcd:azure', 'orchid', 'cornflowerblue']
marker = ['d', 's', '^', '*', 'v', 'x', 'h']
plt.ylim([0.3, 1.0])
plt.xlim([0.0, 0.45])
else:
base_list = ['BGWA', 'PCNN+ATT', 'PCNN']
color = ['purple', 'darkorange', 'green']
marker = ['d', 's', '^']
for i, baseline in enumerate(base_list):
precision = np.load(baselines_path + baseline + '/precision.npy')
recall = np.load(baselines_path + baseline + '/recall.npy')
plt.plot(recall, precision, color = color[i], label = baseline, lw=1, marker = marker[i], markevery = 0.1, ms = 6)
plt.xlabel('Recall', fontsize = 14)
plt.ylabel('Precision', fontsize = 14)
plt.legend(loc="upper right", prop = {'size' : 12})
plt.grid(True)
plt.tight_layout()
plt.show()
plot_path = './results/{}/plot_pr.pdf'.format(args.name)
plt.savefig(plot_path)
print('Precision-Recall plot saved at: {}'.format(plot_path))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('-name', default='pretrained_reside')
parser.add_argument('-dataset', default='riedel_nyt')
args = parser.parse_args()
plotPR(args.dataset)