-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathasap_pool_model.py
55 lines (50 loc) · 2.28 KB
/
asap_pool_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import torch.nn.functional as F
from torch.nn import Linear
from torch_geometric.nn import GCNConv, global_mean_pool
from torch_scatter import scatter_mean, scatter_max
from asap_pool import ASAP_Pooling
import pdb
def readout(x, batch):
x_mean = scatter_mean(x, batch, dim=0)
x_max, _ = scatter_max(x, batch, dim=0)
return torch.cat((x_mean, x_max), dim=-1)
class ASAP_Pool(torch.nn.Module):
def __init__(self, dataset, num_layers, hidden, ratio=0.8, **kwargs):
super(ASAP_Pool, self).__init__()
if type(ratio)!=list:
ratio = [ratio for i in range(num_layers)]
self.conv1 = GCNConv(dataset.num_features, hidden)
self.pool1 = ASAP_Pooling(in_channels=hidden, ratio=ratio[0], **kwargs)
self.convs = torch.nn.ModuleList()
self.pools = torch.nn.ModuleList()
for i in range(num_layers - 1):
self.convs.append(GCNConv(hidden, hidden))
self.pools.append(ASAP_Pooling(in_channels=hidden, ratio=ratio[i], **kwargs))
self.lin1 = Linear(2*hidden, hidden) # 2*hidden due to readout layer
self.lin2 = Linear(hidden, dataset.num_classes)
self.reset_parameters()
def reset_parameters(self):
self.conv1.reset_parameters()
self.pool1.reset_parameters()
for conv, pool in zip(self.convs, self.pools):
conv.reset_parameters()
pool.reset_parameters()
self.lin1.reset_parameters()
self.lin2.reset_parameters()
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
x = F.relu(self.conv1(x, edge_index))
x, edge_index, edge_weight, batch, perm = self.pool1(x=x, edge_index=edge_index, edge_weight=None, batch=batch)
xs = readout(x, batch)
for conv, pool in zip(self.convs, self.pools):
x = F.relu(conv(x=x, edge_index=edge_index, edge_weight=edge_weight))
x, edge_index, edge_weight, batch, perm = pool(x=x, edge_index=edge_index, edge_weight=edge_weight, batch=batch)
xs += readout(x, batch)
x = F.relu(self.lin1(xs))
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin2(x)
out = F.log_softmax(x, dim=-1)
return out
def __repr__(self):
return self.__class__.__name__